Align acetolactate synthase (subunit 2/2) (EC 2.2.1.6) (characterized)
to candidate 8501200 DvMF_1934 sulfoacetaldehyde acetyltransferase (RefSeq)
Query= BRENDA::P00893 (574 letters) >lcl|FitnessBrowser__Miya:8501200 DvMF_1934 sulfoacetaldehyde acetyltransferase (RefSeq) Length = 580 Score = 268 bits (684), Expect = 6e-76 Identities = 178/571 (31%), Positives = 285/571 (49%), Gaps = 29/571 (5%) Query: 1 MEMLSGAEMVVRSLIDQGVKQVFGYPGGAVLDIYDALHTVGGIDHVLVRHEQAAVHMADG 60 M ++ +E + L+ +GV V G G A +D+ D L GID + VRHEQ A HM D Sbjct: 1 MPKMTPSEAMAEVLVQEGVTHVSGILGSAFMDLLD-LFPAAGIDFISVRHEQTAGHMEDA 59 Query: 61 LARATGEVGVVLVTSGPGATNAITGIATAYMDSIPLVVLSGQVATSLIGYDAFQECDMVG 120 R TG GV + +GPG TN +T +ATA M P+VVLS + +G+D FQECD Sbjct: 60 FTRMTGRAGVCIGQNGPGITNYVTAVATANMAHTPMVVLSPSAGSISVGWDGFQECDTWN 119 Query: 121 ISRPVVKHSFLVKQTEDIPQVLKKAFWLAASGRPGPVVVDLPKDILNPANKLPYVWPESV 180 + +P+ K S V + +L+ AF +A + R GPV+VD+P+D + P Sbjct: 120 LFKPITKASLRVPHPKRAADILRTAFRIAYAER-GPVLVDIPRDYFYGELDEDILAP--- 175 Query: 181 SMRSYNPTTTGHKGQIKRALQTLVAAKKPVVYVGGGAITAGCHQQLKETVEALNLPVVCS 240 S P G+ Q + A++ L AAK+PV+ G G + +G + +K E LN PV C+ Sbjct: 176 SQYRVAPGGIGNPEQFREAVEVLKAAKRPVIVSGRGVVDSGALETVKALAEHLNAPVACT 235 Query: 241 LMGLGAFPATHRQALGMLGMHGTYEANMTMHNADVIFAVGVR---FDDRTTNNLAKYCPN 297 + AFP H G +G G+ A + ADVI AVG R F ++ + Sbjct: 236 YLHNDAFPCDHPLWTGPIGYMGSKAAMRILQQADVILAVGTRLSYFGTLPQYDINYFPKT 295 Query: 298 ATVLHIDIDPTSISKTVTADIPIVGDARQVLEQMLELLSQESAHQPLD---------EIR 348 A ++ IDI+P I+KT + + DA+ ++L + + + D E+ Sbjct: 296 AKIVQIDINPRHIAKTHPVAVGLCADAKDAAVELLARVREAMPNPRRDDAVYAMVKAELE 355 Query: 349 DWWQQIEQWRARQCLKYDTHSEKIKPQAVIETLWR-LTKGDAYVTSDVGQHQMFAALYYP 407 DW+++I ++ H P+ ++ + R +T+ +A T+D+G A Y Sbjct: 356 DWYKEIAAIADEPVMEGRMH-----PRKALDVVGRFVTEHNAIATTDIGNTSSTANSYLR 410 Query: 408 FDKPRRWINSGGLGTMGFGLPAALGVKMALPEETVVCVTGDGSIQMNIQELSTALQYELP 467 F +R + + G GF A LG ++A PE+TVV + GDG+ M++ E+ TA+QY LP Sbjct: 411 FRNAKRSVATLTFGNTGFAYQAGLGAQLACPEDTVVAIVGDGAWGMSLFEVPTAVQYNLP 470 Query: 468 VLVVNLNNRYLGMVKQWQDMIYSGRHSQSYMQSLPDFVRLAEAYGHVGIQISHPHELESK 527 V+ NN K+ Q Y+ R + + S + +AEA G G +++ ++ Sbjct: 471 VIATVYNNGAWCAEKKNQVDFYNNRFVGADIWS-NSYAAIAEAMGATGYKVN----TQAD 525 Query: 528 LSEALEQVRNNRL-VFVDVTVDGSEHVYPMQ 557 L++AL+ R +R +++ DG+ P + Sbjct: 526 LADALDAARKSRKPSVIEIMTDGTRLAPPFR 556 Lambda K H 0.319 0.135 0.403 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 729 Number of extensions: 33 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 574 Length of database: 580 Length adjustment: 36 Effective length of query: 538 Effective length of database: 544 Effective search space: 292672 Effective search space used: 292672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory