Align Anthranilate synthase component I (characterized, see rationale)
to candidate CA265_RS22890 CA265_RS22890 anthranilate synthase component I
Query= uniprot:A0A1X9ZB07_9SPHI (466 letters) >lcl|FitnessBrowser__Pedo557:CA265_RS22890 CA265_RS22890 anthranilate synthase component I Length = 466 Score = 937 bits (2422), Expect = 0.0 Identities = 466/466 (100%), Positives = 466/466 (100%) Query: 1 MMYKINTTYKKMLADTTTPVSIYLRLRDVYPNSILLESSDYHSRENSMSFVCADPVAGII 60 MMYKINTTYKKMLADTTTPVSIYLRLRDVYPNSILLESSDYHSRENSMSFVCADPVAGII Sbjct: 1 MMYKINTTYKKMLADTTTPVSIYLRLRDVYPNSILLESSDYHSRENSMSFVCADPVAGII 60 Query: 61 LKGSRLETYFPDGAVEITESKNLIEEITDFKDKFSETELPEIKFISSGLFGYFTWNAVQH 120 LKGSRLETYFPDGAVEITESKNLIEEITDFKDKFSETELPEIKFISSGLFGYFTWNAVQH Sbjct: 61 LKGSRLETYFPDGAVEITESKNLIEEITDFKDKFSETELPEIKFISSGLFGYFTWNAVQH 120 Query: 121 FEDIKFTSETPEGEEIPEMQYHLYRYIIAIDHFKNEITLFKNTFEGEEEGGLEKMEYLIQ 180 FEDIKFTSETPEGEEIPEMQYHLYRYIIAIDHFKNEITLFKNTFEGEEEGGLEKMEYLIQ Sbjct: 121 FEDIKFTSETPEGEEIPEMQYHLYRYIIAIDHFKNEITLFKNTFEGEEEGGLEKMEYLIQ 180 Query: 181 NKNYPEYKFQLRGEESSNLTDQGFMDLVEKLQKHIYRGDVFQIVPSRAFKQAFSGDEFNV 240 NKNYPEYKFQLRGEESSNLTDQGFMDLVEKLQKHIYRGDVFQIVPSRAFKQAFSGDEFNV Sbjct: 181 NKNYPEYKFQLRGEESSNLTDQGFMDLVEKLQKHIYRGDVFQIVPSRAFKQAFSGDEFNV 240 Query: 241 YRCLRSINPSPYLFYFDYGNFKLFGSSPEAQITIKNNSANIFPIAGTFKRSGNDIEDAEQ 300 YRCLRSINPSPYLFYFDYGNFKLFGSSPEAQITIKNNSANIFPIAGTFKRSGNDIEDAEQ Sbjct: 241 YRCLRSINPSPYLFYFDYGNFKLFGSSPEAQITIKNNSANIFPIAGTFKRSGNDIEDAEQ 300 Query: 301 ARKLEQDPKESAEHVMLVDLARNDLSRHCNRVEVKSFKEVQYYSHLIHLVSKVSGHLQEN 360 ARKLEQDPKESAEHVMLVDLARNDLSRHCNRVEVKSFKEVQYYSHLIHLVSKVSGHLQEN Sbjct: 301 ARKLEQDPKESAEHVMLVDLARNDLSRHCNRVEVKSFKEVQYYSHLIHLVSKVSGHLQEN 360 Query: 361 VSAFKVVADTYPAGTLSGAPKYKAMQLIDENEKLGRNFYAGAIGFMGFNEDFNHAIMIRT 420 VSAFKVVADTYPAGTLSGAPKYKAMQLIDENEKLGRNFYAGAIGFMGFNEDFNHAIMIRT Sbjct: 361 VSAFKVVADTYPAGTLSGAPKYKAMQLIDENEKLGRNFYAGAIGFMGFNEDFNHAIMIRT 420 Query: 421 FMSKNNELHYRAGAGIVADSVPETEMQEVNNKIAALRKAVQMAEGI 466 FMSKNNELHYRAGAGIVADSVPETEMQEVNNKIAALRKAVQMAEGI Sbjct: 421 FMSKNNELHYRAGAGIVADSVPETEMQEVNNKIAALRKAVQMAEGI 466 Lambda K H 0.318 0.135 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1031 Number of extensions: 44 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 466 Length of database: 466 Length adjustment: 33 Effective length of query: 433 Effective length of database: 433 Effective search space: 187489 Effective search space used: 187489 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory