Align aromatic-amino-acid transaminase (EC 2.6.1.57) (characterized)
to candidate GFF3088 PGA1_c31390 putative aromatic-L-amino-acid decarboxylase
Query= BRENDA::H7CE71 (509 letters) >lcl|FitnessBrowser__Phaeo:GFF3088 PGA1_c31390 putative aromatic-L-amino-acid decarboxylase Length = 470 Score = 307 bits (786), Expect = 6e-88 Identities = 165/483 (34%), Positives = 261/483 (54%), Gaps = 22/483 (4%) Query: 26 EFRKQGHMVIDFIADYYQNIEKYPVLSRVEPGYLKKCLPESAPYDPEPISTILKDVQDHI 85 +F G + D+ DY+Q + PV +R EPG + LP + P E + I D + + Sbjct: 5 DFSYWGRKIADWTQDYHQTVGDRPVRARTEPGDVLNALPATPPETGEDMEAIFADFETVV 64 Query: 86 VPGLTHWQSPNFFAYFSSTASTAGFLGEILTTGFNVVGFNWVSSPAATELENIVMDWLGD 145 +PG+THWQ P FFAYF+S A+ L E LT+ W +SPAATE+E +MDWL Sbjct: 65 MPGITHWQHPRFFAYFTSNAAAPSVLAEFLTSAIAPQCMLWQTSPAATEMETRMMDWLRQ 124 Query: 146 MLQLPKSFHFSGNGGGVLHGSTCEAIVCTMVAARDQMLRRIGSEN----LGKLVVYGSDQ 201 L LP+ F GV+ S A + ++ R++ L G+E L +Y S + Sbjct: 125 ALDLPEEFQ------GVIQDSASSATLAAVLTMREKALNWQGNEQGLFAQKTLRIYCSSE 178 Query: 202 THSTLQKATQIVGINTENFRAIKTTKSTGFALSPEMLRLTISSDLEKGLVPLFLCATIGT 261 H+++ +A + GI +N + K + PE L I +D+ G P + +G Sbjct: 179 VHTSVDRAIWVAGIGQQNLVRVPI-KGDWRGMDPEALDAAIEADIAVGHQPAGVILCVGG 237 Query: 262 TATTAIDPLEALCHVAKEYGVWVHVDAAYAGSACICPEFRHFINGVEGANSFSFNPHKWL 321 T A DP++ + VA++YG++ HVDAA+AGSA ICPE+R + G+E A+S FNPHKWL Sbjct: 238 TGVGATDPVDQVLDVAEKYGLYTHVDAAWAGSAMICPEYRDYWPGIERADSIVFNPHKWL 297 Query: 322 FTGMDCCCLWVKNPSVLASSLSTNPEFLRNKASDSKQVVDYKDWQIALSRRFRALKLWLV 381 DC ++K+P L +L+ +PE+L+ D +++Y +W + L RRFRALK+W + Sbjct: 298 GVQFDCSAHFLKDPDDLVRTLAISPEYLKTHGKDG--IINYSEWSVPLGRRFRALKIWFL 355 Query: 382 LRSYGVANLRNFIRIHVNMAKTFEGLVRMDKRFEILVPRNFSLVCFRISPSALISSNEDD 441 +R+YG+ LR +R HV ++ ++ + FEI+ P +SL FR P+ Sbjct: 356 IRTYGLEGLRQRLRNHVTWSQQLHDRLKSEPDFEIVTPPMWSLWSFRYQPNGAAD----- 410 Query: 442 EIGMVNEVNCKLLEAINASGKAYMTHAVVGGLYVLRCAVGATLSEEKHIVEAWKVVQDHA 501 ++++N +L+ AIN G+ Y+T V G V+R G + E ++ A V+ + A Sbjct: 411 ----LDDLNLRLVNAINDDGRIYLTQTRVDGALVIRFQAGQFETTEADVMMAHDVITEIA 466 Query: 502 KAI 504 + + Sbjct: 467 RTL 469 Lambda K H 0.321 0.135 0.416 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 588 Number of extensions: 21 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 509 Length of database: 470 Length adjustment: 34 Effective length of query: 475 Effective length of database: 436 Effective search space: 207100 Effective search space used: 207100 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.9 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory