Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate PP_1010 PP_1010 phosphogluconate dehydratase
Query= curated2:A8AB39 (552 letters) >FitnessBrowser__Putida:PP_1010 Length = 608 Score = 268 bits (685), Expect = 4e-76 Identities = 183/539 (33%), Positives = 279/539 (51%), Gaps = 32/539 (5%) Query: 34 IGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGTI-AVCDGIAMGHEGMRYSLP 92 + + +++N+++ H E +K +R G G + A+CDG+ G GM ++ Sbjct: 68 VAIVSAYNDMLSAHQPYLHFPEQIKQALREVGSVGQFAGGVPAMCDGVTQGEPGMELAIA 127 Query: 93 SREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARL-EVPVILINGGPMMPGVYG 151 SREVIA + + + + DA +M+ CDKI PG ++ A R +P I + GGPM+ G+ Sbjct: 128 SREVIAMSTAVALSHNMFDAALMLGICDKIVPGLMMGALRFGHLPTIFVPGGPMVSGISN 187 Query: 152 KERIDFKDLMERMNVLIKEGRTEELRKLEESALPGPGSCAGLFTANTMNMLSEAMGLMLP 211 K++ D R + EEL + E ++ PG+C TANT ++ E MGL LP Sbjct: 188 KQKADV-----RQRYAEGKASREELLESEMNSYHSPGTCTFYGTANTNQLVMEVMGLHLP 242 Query: 212 GASTVPAVEARRLWYAKLTGMRIVKMVEEG---LTPDKILTRKALENAIAVDMALGGSTN 268 GAS V R ++ +M + + +I+ KAL N+I A GGSTN Sbjct: 243 GASFVNPYTPLRDALTAEAAQQVTRMTKASGSFMPLGEIVDEKALVNSIVALHATGGSTN 302 Query: 269 SVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFVVDLDRAGGIPAVLKELGE 328 LH+ A+A GI L + ++S VP ++ + P+G+ + AGG+ +++EL + Sbjct: 303 HTLHIPAIAQAAGIQLTWQDMADLSEVVPTLSHVYPNGKADINHFQAAGGMAFLIRELLD 362 Query: 329 AGLIHKDALTV---------------TGKTVWENVKDAAVLDREVIRPLDNPYSPFGGLA 373 AGL+H+D TV GK VW + LD ++RP+ P+S GGL Sbjct: 363 AGLLHEDVNTVAGHGLRRYTQEPFLDNGKLVWREGPQHS-LDESILRPVSRPFSAEGGLR 421 Query: 374 ILKGSLAPNGAVVKASAVKRELWKFKGVARVFDREEDAVKAIRGGEIEPGTVIVIRYEGP 433 +++G+L V+K SAV E + ARVF ++ A + GE+E V V+R++GP Sbjct: 422 VMEGNL--GRGVMKVSAVAPEHQVVEAPARVFQDQQSLADAFKAGELERDFVAVVRFQGP 479 Query: 434 RGGPGMREMLTATAAVMAL-GLGDKVALVTDGRFSGAT-RGPAIGHVSPEAAAGGPIALV 491 R GM E+ T + L G KVALVTDGR SGA+ + PA HV PEA GGP+A V Sbjct: 480 RCN-GMPELHKLTPFLGVLQDRGYKVALVTDGRMSGASGKIPAAIHVCPEAYDGGPLARV 538 Query: 492 QDGDEIVIDIEKRRLDLLVDEKELEERRARWKPKVKPLRRG-ILRRYAKMALSADKGGA 549 +DGD + +D + L ++V +EL R P+ L G L + +MA S + GA Sbjct: 539 RDGDIVRVDGVEGTLRIMVSAEELASRELPPAPQGNDLGCGRELFGFMRMAFSPAEQGA 597 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 852 Number of extensions: 59 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 608 Length adjustment: 36 Effective length of query: 516 Effective length of database: 572 Effective search space: 295152 Effective search space used: 295152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory