Align Serine hydroxymethyltransferase 2; SHMT 2; Serine methylase 2; EC 2.1.2.1 (characterized)
to candidate SMa2135 SMa2135 GlyA2 serine hydroxymethyltransferase, SHMT
Query= SwissProt::Q3JGP5 (424 letters) >lcl|FitnessBrowser__Smeli:SMa2135 SMa2135 GlyA2 serine hydroxymethyltransferase, SHMT Length = 422 Score = 548 bits (1412), Expect = e-160 Identities = 271/411 (65%), Positives = 321/411 (78%), Gaps = 2/411 (0%) Query: 14 ERDASVRGAILKELERQQSQVELIASENIVSRAVLDAQGSVLTNKYAEGYPGKRYYGGCE 73 + D+ + GAI +E+ RQ+S++ELIASENIVS AVL AQGSV+TNKYAEGYPG RYYGGC+ Sbjct: 10 KHDSVIAGAIAREMGRQRSEIELIASENIVSPAVLAAQGSVMTNKYAEGYPGHRYYGGCQ 69 Query: 74 FADEVEALAIERVKRLFNAGHANVQPHSGAQANGAVMLALAKPGDTVLGMSLDAGGHLTH 133 + D VEA AIER LF+A NVQPHSGAQANGAVMLAL KPGDT +G+SL AGGHLTH Sbjct: 70 YVDLVEAAAIERAGMLFDASFVNVQPHSGAQANGAVMLALLKPGDTFMGLSLAAGGHLTH 129 Query: 134 GAKPALSGKWFNALQYGVSRDTMLIDYDQVEALAQQHKPSLIIAGFSAYPRKLDFARFRA 193 GA+P +SGKWFNA+QYGV LIDYD++E A +P LII G SAYPR +DF R RA Sbjct: 130 GARPTMSGKWFNAVQYGVRESDCLIDYDELEVKAIATRPKLIITGGSAYPRLIDFKRIRA 189 Query: 194 IADSVGAKLMVDMAHIAGVIAAGRHANPVEHAHVVTSTTHKTLRGPRGGFVLTNDEEIAK 253 IADSVGA +MVDMAH AG++A G H NPVE A +VT+TTHKTLRGPRGG +LTN++++AK Sbjct: 190 IADSVGAAMMVDMAHFAGLVAGGVHPNPVEIADIVTTTTHKTLRGPRGGMILTNNQDVAK 249 Query: 254 KINSAVFPGLQGGPLMHVIAGKAVAFGEALTDDFKTYIDRVLANAQALGDVLKAGGVDLV 313 K+NSAVFPGLQGGPLMHVIA KAVA GEAL D+F+ Y +++ANA+AL L G D+V Sbjct: 250 KVNSAVFPGLQGGPLMHVIAAKAVALGEALEDNFRQYARQMVANARALASALTERGYDIV 309 Query: 314 TGGTDNHLLLVDLRPKGLKGAQVEQALERAGITCNKNGIPFDPEKPTITSGIRLGTPAGT 373 +GGTD HL+LVDLR KG+ G E+AL RAG+TCNKNGIPFDP P +TSGIRLGTPA T Sbjct: 310 SGGTDTHLILVDLRSKGVSGKDAEEALGRAGLTCNKNGIPFDPAPPAVTSGIRLGTPAAT 369 Query: 374 TRGFGAAEFREVGRLILEVFEALRTNPEGDHATEQRVRREIFALCERFPIY 424 +RGF AEF EVG LI V +AL T G+ E+R R + LC FPIY Sbjct: 370 SRGFREAEFNEVGALIANVLDALGTEQSGEQ--ERRARMSVHDLCAAFPIY 418 Lambda K H 0.318 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 604 Number of extensions: 22 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 424 Length of database: 422 Length adjustment: 32 Effective length of query: 392 Effective length of database: 390 Effective search space: 152880 Effective search space used: 152880 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory