Align Serine hydroxymethyltransferase 2; SHMT 2; Serine methylase 2; EC 2.1.2.1 (characterized)
to candidate SMc01770 SMc01770 serine hydroxymethyltransferase
Query= SwissProt::Q3JGP5 (424 letters) >lcl|FitnessBrowser__Smeli:SMc01770 SMc01770 serine hydroxymethyltransferase Length = 431 Score = 547 bits (1409), Expect = e-160 Identities = 270/420 (64%), Positives = 328/420 (78%), Gaps = 2/420 (0%) Query: 7 FFSQSLAERDASVRGAILKELERQQSQVELIASENIVSRAVLDAQGSVLTNKYAEGYPGK 66 FF++SLA+ D + GAI KEL RQ+ ++ELIASENIVSRAVL+AQGS++TNKYAEGYPGK Sbjct: 9 FFTRSLADSDPEIFGAIEKELGRQRHEIELIASENIVSRAVLEAQGSIMTNKYAEGYPGK 68 Query: 67 RYYGGCEFADEVEALAIERVKRLFNAGHANVQPHSGAQANGAVMLALAKPGDTVLGMSLD 126 RYYGGC++ D EALAIER K+LF ANVQP+SG+Q N AV LAL +PGDT +G+ L+ Sbjct: 69 RYYGGCQYVDIAEALAIERAKKLFGVNFANVQPNSGSQMNQAVFLALLQPGDTFMGLDLN 128 Query: 127 AGGHLTHGAKPALSGKWFNALQYGVSRDTMLIDYDQVEALAQQHKPSLIIAGFSAYPRKL 186 +GGHLTHG+ +SGKWFN + YGV D L+D D+V A++ KP LIIAG +AY R Sbjct: 129 SGGHLTHGSPVNMSGKWFNVVSYGVREDDHLLDMDEVARKAREQKPKLIIAGGTAYSRIW 188 Query: 187 DFARFRAIADSVGAKLMVDMAHIAGVIAAGRHANPVEHAHVVTSTTHKTLRGPRGGFVLT 246 D+ RFR IAD VGA LMVDMAHIAG++A G+H +P H HV T+TTHK+LRGPRGG +LT Sbjct: 189 DWKRFREIADEVGAWLMVDMAHIAGLVAGGQHPSPFPHCHVATTTTHKSLRGPRGGMILT 248 Query: 247 NDEEIAKKINSAVFPGLQGGPLMHVIAGKAVAFGEALTDDFKTYIDRVLANAQALGDVLK 306 NDEEIAKKINSAVFPGLQGGPLMHVIA KAVA GEAL FK Y +V+ NA+ L + LK Sbjct: 249 NDEEIAKKINSAVFPGLQGGPLMHVIAAKAVALGEALQPSFKDYAAQVVKNARTLAETLK 308 Query: 307 AGGVDLVTGGTDNHLLLVDLRPKGLKGAQVEQALERAGITCNKNGIPFDPEKPTITSGIR 366 A G+D+V+GGTDNHL+LVDLR K G + E AL RA +TCNKNGIPFDPEKP +TSG+R Sbjct: 309 ANGLDIVSGGTDNHLMLVDLRKKNATGKRAEAALGRAYVTCNKNGIPFDPEKPFVTSGVR 368 Query: 367 LGTPAGTTRGFGAAEFREVGRLILEVFEALR--TNPEGDHATEQRVRREIFALCERFPIY 424 LG PAGTTRGF AEF+EVG LI+EV + L+ + EG+ A E VR ++ L +RFP+Y Sbjct: 369 LGAPAGTTRGFKEAEFKEVGELIVEVLDGLKAANSDEGNAAVEAGVREKVIKLTDRFPMY 428 Lambda K H 0.318 0.136 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 598 Number of extensions: 26 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 424 Length of database: 431 Length adjustment: 32 Effective length of query: 392 Effective length of database: 399 Effective search space: 156408 Effective search space used: 156408 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory