GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisE in Synechococcus elongatus PCC 7942

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate Synpcc7942_1519 Synpcc7942_1519 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>FitnessBrowser__SynE:Synpcc7942_1519
          Length = 434

 Score =  278 bits (710), Expect = 6e-79
 Identities = 162/407 (39%), Positives = 242/407 (59%), Gaps = 11/407 (2%)

Query: 388 VNPIIENVRDKGNSALLEYTEKFDGVKLSNPVLNAPFPE--EYFEGLTEEMKEALDLSIE 445
           V  I++ V+ +G++AL+E+T++FDG  L    L     E    ++ + +E+ +A+ L+  
Sbjct: 34  VREIVQAVQRRGDAALIEFTQEFDGFALQAENLRVSGAELDAAYQQIPKELLDAIRLAHH 93

Query: 446 NVRKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVPAQVA 505
            +  FH  ++P   ++      VL  R+  P+++ GLY+PGG A  PST LM  VPA+VA
Sbjct: 94  QIEAFHRQRVPKSWVQFGADGEVLGKRYT-PVDRAGLYVPGGRAAYPSTVLMNAVPAKVA 152

Query: 506 QCKEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKVDKIL 565
             + +V  +PP   DG ++P V+  A++ G  +I   GGAQA+AA+AYGT TIPKVD I 
Sbjct: 153 GVERVVITTPPGP-DGSLNPAVLVAAQEAGIEEIYRVGGAQAIAALAYGTATIPKVDVIS 211

Query: 566 GPGNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEHGIDS 625
           GPGN +VT AK  V         ID  AGPSEVL+IAD  A+  +VA+DLL+QAEH   +
Sbjct: 212 GPGNIYVTLAKKLVYGTV----GIDSLAGPSEVLIIADRSANPRWVAADLLAQAEHDPLA 267

Query: 626 QVILVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCIAHSTI-VLCDGYEEALEMSNQY 684
             IL+  +L  +   ++   V  Q    PR  +  K IAH  + ++ D  E A+++SNQ+
Sbjct: 268 AAILITPDL--ELATQVGFEVERQLQDHPRRLVTEKAIAHYGLAIVVDSLETAVKLSNQF 325

Query: 685 APEHLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSGANT 744
           APEHL L++ +    V+ V +AG++F+G+ TPE+ GDY +G NHTLPT G AR  S  + 
Sbjct: 326 APEHLELEVEDPWALVEQVRHAGAIFLGSLTPEAIGDYVAGPNHTLPTSGAARYASALSV 385

Query: 745 ATFQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIRMSKL 791
            TF K  +    T   L+ + RAV  +A  EGL+ H  +V++R   L
Sbjct: 386 ETFLKSSSLIEYTAASLQRVARAVDVLATAEGLESHAESVRLRQQSL 432


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 653
Number of extensions: 28
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 434
Length adjustment: 37
Effective length of query: 762
Effective length of database: 397
Effective search space:   302514
Effective search space used:   302514
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory