Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate GFF4259 PS417_21815 amidase
Query= curated2:A1K1T5 (487 letters) >FitnessBrowser__WCS417:GFF4259 Length = 500 Score = 184 bits (467), Expect = 6e-51 Identities = 160/472 (33%), Positives = 217/472 (45%), Gaps = 42/472 (8%) Query: 18 VSSVELATLFLDRIAERNPALNAFITIDREGALAAARAADARIAAGTA-GPLTGIPLAHK 76 ++S +L T RI +P L+A I ++ + AL AR D A G GPL G+P+ K Sbjct: 53 LTSADLVTHLQARIRRLDPQLSAIIELNPK-ALETARELDRERARGNVRGPLHGMPILLK 111 Query: 77 DLFCTEGVLTTCGSKMLADFVSPYDAHVVSRLKDAGAVSLGKTNMDE---FAMGSSNESS 133 D TEG+ T+ G+ L + +A +V L GAV LGKTNM E F G SS Sbjct: 112 DTIETEGMQTSAGAFGLVGASASKNAPLVDHLIQQGAVILGKTNMTEMAGFRGGPDGWSS 171 Query: 134 HYGAVRNPWDTTRIPGGSSGGSAAAVAARLVPLATGSDTGGSVRQPASHTGVTGIKPTYG 193 G RNP GGSS GSAAAVAA L P+A G++T GS+ PA+ G+ G+KPT G Sbjct: 172 RGGQTRNPHQRDADVGGSSSGSAAAVAAGLAPMAVGAETNGSIIVPAARNGIVGLKPTVG 231 Query: 194 VVSRYGMIAYASSLDQGGAFGASAEDCALLLTAMAGFDPRDSTCLDRP-AEDYAAALAPT 252 ++ R G+I + D G S D AL+L AM+G DP D + P DY L P Sbjct: 232 LLDRNGIIPASQYQDTPGPMTRSVFDAALMLNAMSGSDPADPASVGAPQGIDYTQLLVPG 291 Query: 253 AGGKPLAGLRIGLPREFFAEGMADDVR--AAVDAALDQYRALGAVTVEVSLPNAKLAVPA 310 A L G RIG P F EG V + L+ R GAV V V+L A + Sbjct: 292 A----LKGKRIGYPATFSKEGETLPVENSTTFNRTLEVLREQGAVLVPVNLRLADAS--R 345 Query: 311 YYVIAPAEASSNLSRFDGVRYGHRAAEYGDL---NDMYCKSRAEGFGAEVKRRILVGTYV 367 Y + ++ +L+ + G R G +L ND + +E V R I T Sbjct: 346 YDELLLSDVKDSLNTYLGKRSGLPVKSLTELIRFNDE--RDGSETDHQPVLREISASTLT 403 Query: 368 LSHGYYDAYYLQAQKLRRLIAQDFQAAFAQCDVIAGPTSPTTAWAIGEKADDPVQMYLSD 427 + + L + QDF+++ P A E D V + ++ Sbjct: 404 PA---------ARKPLWEALIQDFRSSI---------DDPIKA----ENLDAMVSDFDTN 441 Query: 428 IYTIAVNLAGLPGLSHPCGFGAGRLPVGLQLIGNYFGESRLLATAHQYQQAS 479 Y V AG PG++ P G LP G + E LLA AH Y+QA+ Sbjct: 442 SY-FGVAAAGYPGIAVPSGVDEDGLPTSAYFFGTQWAEPTLLAVAHGYEQAA 492 Lambda K H 0.318 0.133 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 527 Number of extensions: 22 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 487 Length of database: 500 Length adjustment: 34 Effective length of query: 453 Effective length of database: 466 Effective search space: 211098 Effective search space used: 211098 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory