Align Acetolactate synthase large subunit; AHAS; EC 2.2.1.6; Acetohydroxy-acid synthase large subunit; ALS; Vegetative protein 105; VEG105 (uncharacterized)
to candidate GFF1617 PS417_08225 acetolactate synthase
Query= curated2:P37251 (574 letters) >FitnessBrowser__WCS417:GFF1617 Length = 571 Score = 275 bits (702), Expect = 5e-78 Identities = 179/556 (32%), Positives = 284/556 (51%), Gaps = 20/556 (3%) Query: 34 EMIFGYP--GGAVLPIYDKLYNSGLVHILP-RHEQGAIHAAEGYARVSGKP--GVVIATS 88 ++++GY GG + + D + G ++ HEQGA AA +R + GV + TS Sbjct: 15 KVLYGYELIGGMITHLVDSINQLGKTKLVSVHHEQGAAFAASAVSRATHHEVLGVALGTS 74 Query: 89 GPGATNLVTGLADAMIDSLPLVVFTGQVATSVIGSD------AFQEADILGITMPVTKHS 142 GPGATNL+TG+AD +DS P + TGQV T + + FQE D + + +TK++ Sbjct: 75 GPGATNLITGIADCWLDSHPCLFLTGQVNTYELKGERNIRQQGFQELDSVALVSSITKYA 134 Query: 143 YQVRQPEDLPRIIKEAFHIATTGRPGPVLIDIPKDVATIEGEFSYDHEMNLPGYQPTTEP 202 YQVR ++L +++A +A GRPGPVL+DIP D+ + + + LP Q P Sbjct: 135 YQVRHVDELLPCLQKAIDLAREGRPGPVLLDIPMDIQRTDIDDAAVSAFLLPCAQQIAAP 194 Query: 203 -NYLQIRKLVEAVSSAKKPVILAGAGVLHGKASEELKNYAEQQQIPVAHTLLGLGGFPAD 261 + + A++ A+ P+IL G G ++ N E IP +L G PA Sbjct: 195 LQAADLETISNALACARNPLILLGGGAVNTPNFAHWLNQLETSGIPYVASLKGAEKIPAS 254 Query: 262 HPLFLGMAGMHGTYTANMALHECDLLISIGARFDDRVTG-NLKHFARNAKIAHIDIDPAE 320 +LGM G +GT AN A+ CD L+ +G+R D R TG + FAR AK+ ID+ + Sbjct: 255 AN-YLGMLGAYGTRAANHAVQNCDFLLVLGSRLDVRQTGAKPEDFARKAKVFQIDLMEGQ 313 Query: 321 IGKIMKTQIPVVGDSKIVLQELIKQDGKQSDSSEWKKQLAEWKEEYPLWYVDNEEE-GFK 379 + +K V + + + +++ + W A+ + ++ +VD + Sbjct: 314 LNNRVKAHASYVMELNTFFADFPLCEVQEN--AAWNAWAADLRADFDQSFVDEYTDWSVS 371 Query: 380 PQKLIEYIHQFTKGEAI-VATDVGQHQMWSAQFYPFQKADKWVTSGGLGTMGFGLPAAIG 438 P + + TKG + DVG +QMW+A SGGLGTMGF +PAAIG Sbjct: 372 PFVICSTLGALTKGHGVDFVADVGNNQMWAAHTLRLSPGQSMHHSGGLGTMGFAIPAAIG 431 Query: 439 AQLAEKDATVVAVVGDGGFQMTLQELDVIRELNLPVKVVILNNACLGMVRQWQEIFYEER 498 A A + V+ + GDGG Q+ +QELD+I LPV +++LNN LGMVR +QE+++E R Sbjct: 432 ACNAG-NKPVIVITGDGGAQLNIQELDIIARDQLPVLIIVLNNHSLGMVRGFQEMYFEGR 490 Query: 499 YSESKF-ASQPDFVKLSEAYGIKGIRISSEAEAKEKLEEALTSREPVVIDVRVASEEKVF 557 S + + F + EAYGI +S+ E ++ + S P +I++ + + Sbjct: 491 NSSTYWNGYTSQFKAIGEAYGISSTVVSTHEEFAAQVGMFIESPRPALIELMMPDARECR 550 Query: 558 PMVAPGKGLHEMVGVK 573 P + G+ + + + K Sbjct: 551 PRLEFGRSIDQQLPEK 566 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 757 Number of extensions: 39 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 574 Length of database: 571 Length adjustment: 36 Effective length of query: 538 Effective length of database: 535 Effective search space: 287830 Effective search space used: 287830 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory