Align 4-aminobutyrate aminotransferase GabT; (S)-3-amino-2-methylpropionate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.22 (characterized)
to candidate AZOBR_RS19630 AZOBR_RS19630 4-aminobutyrate aminotransferase
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__azobra:AZOBR_RS19630 Length = 428 Score = 475 bits (1223), Expect = e-138 Identities = 232/423 (54%), Positives = 305/423 (72%), Gaps = 2/423 (0%) Query: 3 SNKELMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKV 62 SN+ RR+ A+PRG+ P++ DRAEN +WDVEG ++DFAGGIAVLNTGH HPK+ Sbjct: 2 SNQSFQDRRNAAVPRGLANAMPVYVDRAENAELWDVEGNRFIDFAGGIAVLNTGHRHPKI 61 Query: 63 VAAVEAQLKKLSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIA 122 + AV+AQL + +HTC V YE ++ L E +N VPG KKT TTG+EAVENAVKIA Sbjct: 62 IEAVKAQLDRFTHTCAMVTPYESFVTLAERLNALVPGSTPKKTAFFTTGAEAVENAVKIA 121 Query: 123 RAATKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISEDD 182 RA T R G IAFSGA+HGRT +ALTGKV PY G G P VY A +P G+S D Sbjct: 122 RAHTGRPGVIAFSGAFHGRTLLAMALTGKVVPYKVGFGPFPAEVYHAPFPNAYRGVSVQD 181 Query: 183 AIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQ 242 ++ ++ ++FK+D +AAI++EPVQGEGGF + P F+Q LR +CDE+GI+LI DE+Q Sbjct: 182 SLKALEQLFKSDVDATRVAAIIVEPVQGEGGFNIAPPEFLQALRKICDENGILLIIDEIQ 241 Query: 243 SGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNP 302 +G RTG +FA+E GV PDL T AKS+AGGFPL+ VTG+AE+MDA PGG+GGTYAG+P Sbjct: 242 TGFARTGKMFAIEHSGVEPDLMTMAKSLAGGFPLSAVTGKAEIMDAPIPGGIGGTYAGSP 301 Query: 303 IACVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKH--PEIGDVRGLGAMIAIELF 360 +A AAL VL V E+E L+Q++NDLG+++ +A+++ IGDVR LG MIA+EL Sbjct: 302 LATTAALAVLDVIEEEKLIQRSNDLGERIAGRFRTMAQRNTLSVIGDVRNLGGMIAMELV 361 Query: 361 EDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEIISQC 420 +D +P A+LT +VA+A +KGL+LLSCG Y NV+RILVPLT DA + +GL+II + Sbjct: 362 KDRGTKEPAAELTKALVAKAAEKGLVLLSCGTYGNVIRILVPLTASDALVDEGLDIIERS 421 Query: 421 FDE 423 +E Sbjct: 422 LEE 424 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 533 Number of extensions: 19 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 428 Length adjustment: 32 Effective length of query: 394 Effective length of database: 396 Effective search space: 156024 Effective search space used: 156024 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory