GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argJ in Azospirillum brasilense Sp245

Align glutamate N-acetyltransferase (EC 2.3.1.35) (characterized)
to candidate AZOBR_RS02855 AZOBR_RS02855 N-acetylglutamate synthase

Query= BRENDA::Q92MJ1
         (413 letters)



>FitnessBrowser__azobra:AZOBR_RS02855
          Length = 412

 Score =  441 bits (1134), Expect = e-128
 Identities = 234/415 (56%), Positives = 296/415 (71%), Gaps = 5/415 (1%)

Query: 1   MSGSVSPLAPKTFAEMPALRGVRMATAAAGIKYKNRTDVLMMLFDRPASVAGVFTRSKCP 60
           M+ +VSPLAP  F  +P + GVR+ATA +GI+YK R D+++ + D   +VAGV T+S   
Sbjct: 1   MATTVSPLAPAGFPTLPPVAGVRIATANSGIRYKGRDDLMLAVLDEGTTVAGVLTKSLTC 60

Query: 61  SAPVDHCRQNLPGGIARAVVVNSGNANAFTGKKGREATRLTAEAAAKAVGCSEAEVFLAS 120
           SAPV  CR +LP G ARAVVVN+GNANAFTGK G    + T EAAAK  GC+  EV++AS
Sbjct: 61  SAPVIWCRDSLPRGSARAVVVNAGNANAFTGKAGDATVQATVEAAAKIAGCATDEVYVAS 120

Query: 121 TGVIGEPLDATKFAGVLDKLAASATQDFW-FEA-AKAIMTTDTYPKVATRSAEIGGVKVA 178
           TGVIG PL A   A VL  +  +   D    EA A+AIMTTDT+ K +TR   IGG  V 
Sbjct: 121 TGVIGIPLAADAIAKVLPGMVPALKDDSAALEAGARAIMTTDTFAKGSTRQVAIGGTTVT 180

Query: 179 INGIAKGAGMIAPDMATMLSFVVTDADIAPAALQALLQAGVEPTFNSVTVDSDTSTSDTL 238
           I+G AKG+GMIAPDMATML F+ TDA IA  ALQ++L    E +FN++TVD DTSTSDTL
Sbjct: 181 ISGFAKGSGMIAPDMATMLGFLFTDAAIAAPALQSMLSEFTERSFNAITVDGDTSTSDTL 240

Query: 239 MLFATGAAAGDGQAKVEDAADPRLDGFRAALDDLLRDLALQVVRDGEGARKMVEVTVEGA 298
           +LFATG A   G A V DA  P L  FR AL++++ DLALQ+VRDGEGA K V +T+ GA
Sbjct: 241 LLFATGKA---GNAPVTDAQAPELAAFRKALEEVMLDLALQIVRDGEGATKFVSITLVGA 297

Query: 299 ENDAAAKRIALSIANSPLVKTAVAGEDANWGRVVMAVGKSGEMAERDRLAIWFGDIRVAV 358
           END AAKRIAL++ANSPLVKTA+AGEDANWGR+V A+G++GE A+RD + I  G   +  
Sbjct: 298 ENDVAAKRIALTVANSPLVKTALAGEDANWGRIVAAIGRAGERADRDLIKITIGGTLICA 357

Query: 359 EGERDPAYSEAAATAVMQGETIPIRVDIGLGSGRATVYTCDLTKEYVEINGDYRS 413
           EG   P Y EA   A M+G+ I + +D+G+G+G++ V+TCDLT  Y++ING YRS
Sbjct: 358 EGMEVPGYDEAPVAAHMKGQEIDVHIDLGIGTGKSRVWTCDLTHGYIDINGSYRS 412


Lambda     K      H
   0.316    0.130    0.365 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 422
Number of extensions: 8
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 413
Length of database: 412
Length adjustment: 31
Effective length of query: 382
Effective length of database: 381
Effective search space:   145542
Effective search space used:   145542
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory