Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate AZOBR_RS31260 AZOBR_RS31260 dihydroxy-acid dehydratase
Query= curated2:A8AB39 (552 letters) >FitnessBrowser__azobra:AZOBR_RS31260 Length = 608 Score = 291 bits (745), Expect = 5e-83 Identities = 186/518 (35%), Positives = 281/518 (54%), Gaps = 28/518 (5%) Query: 23 GLIDEELRR--PLIGVANSWNEIVPGHVHLDKVAEAVKAGIRMAGGTPLEFGTIAVCDGI 80 GL EEL+ P+IG+A + +++ P + H +AE ++ GIR AGG +EF + + Sbjct: 45 GLTREELQSGAPIIGIAQTGSDLSPCNRHHLVLAERLREGIRTAGGIAIEFPVHPIQE-- 102 Query: 81 AMGHEGMR--YSLPSREVIADTVEIMVEAHRLDAVVMVTNCDKITPGFLLAAARLEVPVI 138 G R S+ VE++ + LD VV+ CDK TP L+AAA + +P I Sbjct: 103 ----TGKRPTASIDRNLAYLGLVEVL-HGYPLDGVVLTIGCDKTTPACLMAAATVNIPAI 157 Query: 139 LINGGPMMPGVYGKERIDFKDLMERMNVLIKEGRTEELRKLE--ESALPGPGSCAGLFTA 196 ++ GPM+ G + ER ++ + ++ G + +E S+ P G C + TA Sbjct: 158 ALSVGPMLNGWFRGERTGSGTIVWKARQMMAAGEIDYQGFIELVASSAPSTGYCNTMGTA 217 Query: 197 NTMNMLSEAMGLMLPGASTVPAVEARRLWYAKLTGMRIVKMVEEGLTPDKILTRKALENA 256 +TMN L+E +G+ LPG++ +PA R TG RIV+MV E L P ILTR A NA Sbjct: 218 STMNSLAEVLGMQLPGSAAIPAPYRERQQADYETGKRIVEMVREDLKPSDILTRDAFLNA 277 Query: 257 IAVDMALGGSTNSVLHLEALAYELGIDLPLEVFDEISRKVPHIASISPSGRHFVVDLDRA 316 I V+ A+GGSTN+ +H+ A+A +G+ L +E + VP + ++ P+G + D RA Sbjct: 278 IVVNSAIGGSTNAPIHINAIAKHIGVPLTVEDWQTHGHDVPLLVNLQPAGEYLGEDFHRA 337 Query: 317 GGIPAVLKELGEAGLIHKDALTVTGKTVWENVKDAAVLDREVIRPLDNPYSPFGGLAILK 376 GG+PAV+ +L GLI + A TV G+T+ EN + +LD VI P+D P P G +L+ Sbjct: 338 GGVPAVVAQLMGKGLIREGAPTVNGRTIGENCRRQPILDTRVIHPIDEPLMPNAGFVVLR 397 Query: 377 GSLAPNGAVVKASAVKRELWK-----------FKGVARVFDREEDAVKAIRGGE--IEPG 423 G+L A++K S + E + F+G VFD ED I I+ Sbjct: 398 GNLF-GAAIMKTSVISDEFRERYLSNPQDPEAFEGKVVVFDGPEDYHHRIDDPSLGIDAY 456 Query: 424 TVIVIRYEGPRGGPGMREMLTATAAVMALGLG-DKVALVTDGRFSGATRGPAIGHVSPEA 482 T++VIR GP G PG E++ + G + + DGR SG + P+I + SPEA Sbjct: 457 TILVIRGTGPIGYPGAAEVVNMRPPATLIKQGVHSLPCIGDGRQSGTSGSPSILNASPEA 516 Query: 483 AAGGPIALVQDGDEIVIDIEKRRLDLLVDEKELEERRA 520 AAGG +AL++ GD + ID+ + D+L+ E EL +RRA Sbjct: 517 AAGGGLALLRSGDRVRIDLRRGSADILIPEGELADRRA 554 Lambda K H 0.319 0.138 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 814 Number of extensions: 45 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 608 Length adjustment: 36 Effective length of query: 516 Effective length of database: 572 Effective search space: 295152 Effective search space used: 295152 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory