GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisI in Pseudomonas stutzeri RCH2

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate GFF3235 Psest_3298 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>FitnessBrowser__psRCH2:GFF3235
          Length = 436

 Score =  260 bits (664), Expect = 1e-73
 Identities = 150/402 (37%), Positives = 232/402 (57%), Gaps = 13/402 (3%)

Query: 391 IIENVRDKGNSALLEYTEKFDGVKLSNP---VLNAPFPEEYFEGLTEEMKEALDLSIENV 447
           II+ VR++G++AL+E T++FDG+++++    +L     E+  E +T   +EAL+++ E V
Sbjct: 42  IIKAVRERGDAALVELTQRFDGLQVASMADLILPRARLEQALERITPAQREALEIAAERV 101

Query: 448 RKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVPAQVAQC 507
             +H  Q        E    VL  +   P+++ GLY+PGG A  PS+ LM  +PA+VA  
Sbjct: 102 SSYHERQKQDSWTYTEADGTVLGQKVT-PLDRAGLYVPGGKASYPSSVLMNAIPAKVAGV 160

Query: 508 KEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKVDKILGP 567
            E+V   P  +  G+++  V+  A   G  ++   GGAQAVAA+AYGTE++P VDKI+GP
Sbjct: 161 PEVVMVVPTPR--GELNELVLAAACIAGVDRVFTIGGAQAVAALAYGTESVPPVDKIVGP 218

Query: 568 GNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEHGIDSQV 627
           GN +V  AK +V         IDM AGPSE+LV+ D   D D++A DL SQAEH  D+Q 
Sbjct: 219 GNIYVATAKRHVFGKV----GIDMIAGPSEILVVCDGQTDPDWIAMDLFSQAEHDEDAQS 274

Query: 628 ILVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCI-AHSTIVLCDGYEEALEMSNQYAP 686
           ILV  +   + +  + +++      L R DI R  I     ++L    ++A+E++N+ AP
Sbjct: 275 ILVSPDA--EFLDRVAESIARLLPTLERADIARTSIEGRGALILVADMQQAIEVANRIAP 332

Query: 687 EHLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSGANTAT 746
           EHL L +A    ++  + +AG++F+G YT E+ GDY +G NH LPT G AR  S      
Sbjct: 333 EHLELSVAEPEQWLPQIRHAGAIFMGRYTAEALGDYCAGPNHVLPTSGTARFSSPLGVYD 392

Query: 747 FQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIRM 788
           FQK  +  N + EG   +G+    +A+ E L  H  + + R+
Sbjct: 393 FQKRSSIINCSAEGASTLGKVASVLARGESLTAHARSAEYRI 434


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 734
Number of extensions: 35
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 436
Length adjustment: 37
Effective length of query: 762
Effective length of database: 399
Effective search space:   304038
Effective search space used:   304038
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory