GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Pseudomonas stutzeri RCH2

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate GFF4018 Psest_4091 diaminobutyrate--2-oxoglutarate aminotransferase

Query= curated2:Q8TUZ5
         (389 letters)



>FitnessBrowser__psRCH2:GFF4018
          Length = 425

 Score =  205 bits (521), Expect = 2e-57
 Identities = 142/414 (34%), Positives = 219/414 (52%), Gaps = 38/414 (9%)

Query: 7   IDKYHMNTYSR-FPVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQV 65
           +++  + +Y R FPV     +GA +   +G  YID +AG      GH HP + +A+ E +
Sbjct: 6   LNESKVRSYCRSFPVVFNQAQGAELVTQDGKRYIDFLAGAGTLNYGHNHPVLKQALLEYI 65

Query: 66  ER--LIHCSNLYYNEPQAEAA---RLLAEAAPK-DLNKVFFCNSGTESVECAIKLARKFT 119
           E   + H  ++Y    +       RL+ E     D    F   +GT +VE A+KLARK T
Sbjct: 66  ENDGITHGLDMYTAAKERFLETFNRLILEPRGMGDYRMQFTGPTGTNAVEAAMKLARKVT 125

Query: 120 GCTKFIAFEGGFHGRTMGALSATWKPEFREPFEPLVPEFEHVPYGD--------VNAVEK 171
           G    I+F  GFHG ++GAL+AT     R      + +   +PY +        +  ++K
Sbjct: 126 GRNNIISFTNGFHGCSIGALAATGNQHHRGGSGISLTDVSRMPYANYFGDKTNTIGMMDK 185

Query: 172 AIDDDT------AAVIVEPVQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRT 225
            + D +      AAVIVE VQGE G+      ++R+L +LC +H +LLIVD++Q+G GRT
Sbjct: 186 LLSDPSSGIDKPAAVIVEVVQGEGGLNTASTEWMRKLEKLCRKHEMLLIVDDIQAGCGRT 245

Query: 226 GQFFAFEHEDVLPDIVCLAKGLGG-GVPVGATIAREEVAEAFEPGDHGSTFGGNPLACAA 284
           G FF+FE   + PDIV L+K L G G+P    + R+E+ + ++PG+H  TF GN  A   
Sbjct: 246 GTFFSFEEMGIQPDIVTLSKSLSGYGLPFAMVLLRQEL-DQWKPGEHNGTFRGNNHAFVT 304

Query: 285 VCAAVSTVLEEN-LPEAAERKGKLAMRILSEAEDVVEE-------VRGRGLMMGVEVGDD 336
             AAV    + +    + + KGK   RI    + ++         ++GRG+M+G+   D 
Sbjct: 305 AAAAVEHFWQNDAFANSVKAKGK---RIADGMQRIIRRHGPDSLYLKGRGMMIGISCPDG 361

Query: 337 ERAKDVAREMLDRGALVNVTSG---DVIRLVPPLVIGEDELEKALAELADALRA 387
           E A  V R   + G LV  TSG   +V++ + PL+I E++++KALA L  A  A
Sbjct: 362 EIAAAVCRHAFENG-LVIETSGAHSEVVKCLCPLIISEEQIDKALAILDKAFAA 414


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 381
Number of extensions: 18
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 425
Length adjustment: 31
Effective length of query: 358
Effective length of database: 394
Effective search space:   141052
Effective search space used:   141052
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory