Align acetolactate synthase (subunit 2/2) (EC 2.2.1.6) (characterized)
to candidate PfGW456L13_3207 Acetolactate synthase large subunit (EC 2.2.1.6)
Query= BRENDA::P08142 (562 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3207 Length = 535 Score = 244 bits (622), Expect = 8e-69 Identities = 169/538 (31%), Positives = 263/538 (48%), Gaps = 20/538 (3%) Query: 11 KRFTGAEFIVHFLEQQGIKIVTGIPGGSILPVYDALSQSTQIRHILARHEQGAGFIAQGM 70 K TG + +V L G+ V GIPG L +Y L S IRH+L RHEQGA F+A G Sbjct: 4 KTLTGGQALVRLLANYGVDTVFGIPGVHTLELYRGLPGSG-IRHVLTRHEQGASFMADGY 62 Query: 71 ARTDGKPAVCMACSGPGATNLVTAIADARLDSIPLICITGQVPASMIGT---DAFQEVDT 127 AR GKP VC +GPG TN T I A DSIP++ I+ ++ +G + D Sbjct: 63 ARVSGKPGVCFVITGPGVTNAATGIGQAYADSIPMLVISSVNHSASLGKGWGSLHECQDQ 122 Query: 128 YGISIPITKHNYLVRHIEELPQVMSDAFRIAQSGRPGPVWIDIPKDVQTAVFEIETQPAM 187 ++ PIT + + E+LP++++ A+ + S RP PV I +P DV +A + + Sbjct: 123 RAMTAPITAFSAVALTAEDLPELIARAYAVFDSERPRPVHISVPLDVLSAPIARDWSNEV 182 Query: 188 AEKAAAPAFSEESIRDAAAMINAAKRPVLYLGGGVINAPARVRELAEKAQLPTTMTLMAL 247 + S +I A A +NAAKRP++ GGG +NA + ++E++ + P ++ Sbjct: 183 VRRPGRGPASTTAIDQAVAKLNAAKRPMIIAGGGALNATSELQEVSTRLAAPLFTSVAGK 242 Query: 248 GMLPKAHPLSLGMLGMHGVRSTNYILQEADLLIVLGARFDDRAIGKTEQFCPNAKIIHVD 307 G+LP PL+ G V ++ EAD+++ +G D + E+ N +++ VD Sbjct: 243 GLLPPDAPLNAG--SSLCVEPGWNLIAEADVVLAVGTEMADTDFWR-ERLPLNGELLRVD 299 Query: 308 IDRAELGKIKQPHVAIQADVDDVLAQLIPLVEAQPRAEWHQL--VADLQREFPCPIPKAC 365 ID + VA+ D L+ L+ + R + VA L++ + + Sbjct: 300 IDPRKFNDFYPCAVALHGDAQQTLSGLLERLPTDVREASAAIASVAALRK----AVKASH 355 Query: 366 DPLS--HYGLINAVAACVDDNAIITTDVGQHQMWTAQAYPLNRPRQWLTSGGLGTMGFGL 423 PL H +++ +AA + DNA I+TD+ Q A+ R WL G GT+G+GL Sbjct: 356 GPLQSIHQSILDRIAAELPDNAFISTDMTQLAYTGNYAFDSLAIRSWLHPTGYGTLGYGL 415 Query: 424 PAAIGAALANPDRKVLCFSGDGSLMMNIQEMATASENQLD--VKIILMNNEALGLVHQQQ 481 PA IGA P R L GDG + QE+AT+ E +LD + ++L NN+ALG + Sbjct: 416 PAGIGAKFGAPQRPGLVLVGDGGFLYTAQELATSVE-ELDSPLVVLLWNNDALGQIRDDM 474 Query: 482 SLFYEQGVFAATYPGKINFMQIAAGFGLETCDLNNEADPQASLQEIINRPGPALIHVR 539 + + P +F +A FG + A+ Q L+ R G LI ++ Sbjct: 475 LGLDIEPI--GVLPRNPDFAALARAFGCTVTQPQSLAELQTDLRHGFKRNGVTLIELK 530 Lambda K H 0.320 0.135 0.400 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 793 Number of extensions: 38 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 562 Length of database: 535 Length adjustment: 36 Effective length of query: 526 Effective length of database: 499 Effective search space: 262474 Effective search space used: 262474 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory