Align Dihydroxy-acid dehydratase; DAD; EC 4.2.1.9 (uncharacterized)
to candidate PfGW456L13_3320 L-arabonate dehydratase (EC 4.2.1.25)
Query= curated2:B9MPM8 (552 letters) >FitnessBrowser__pseudo13_GW456_L13:PfGW456L13_3320 Length = 578 Score = 367 bits (941), Expect = e-106 Identities = 219/546 (40%), Positives = 324/546 (59%), Gaps = 24/546 (4%) Query: 16 RSLFKAMGYTDEEIR-RPLIAVVNSWNEVVPGHIHLDRIAEAVKAGIRLAGATPMEFNVI 74 RS K G D + +P+I + N+W+E+ P + H +IAE VK G+ AG P+EF V Sbjct: 25 RSWMKNQGIADHQFHGKPIIGICNTWSELTPCNAHFRQIAEHVKRGVIEAGGFPVEFPVF 84 Query: 75 GVCDGIAMGHIGMK-YSLITRELIADSIEAMVMAHQFDGMVLIPNCDKIVPGMLIAAARV 133 + G ++ +++TR L + +E + + DG+VL+ CDK P +L+ AA Sbjct: 85 ------SNGESNLRPTAMLTRNLASMDVEEAIRGNPIDGVVLLTGCDKTTPALLMGAASC 138 Query: 134 NIPAILISGGPMLAGKIGDKVCDLNS---VFEGVGAYSAGKISEEDLYALEENACPGCGS 190 ++PAI+++GGPML GK K D+ S V++ AG IS +D A E G+ Sbjct: 139 DVPAIVVTGGPMLNGKHKGK--DIGSGTVVWQLSEQVKAGTISIDDFLAAEGGMSRSAGT 196 Query: 191 CSGMFTANTMNCLSEVLGLALPGNGTIPAVMAARIRLAKMAGMKIVELVEKDIKPSDILT 250 C+ M TA+TM C++E LG +LP N IPAV A R LA M+GM+ VE+V +D+K S ILT Sbjct: 197 CNTMGTASTMACMAEALGTSLPHNAAIPAVDARRYVLAHMSGMRAVEMVREDLKLSKILT 256 Query: 251 VEAFENALAVDMALGGSTNTILHLPAIANEVGIKLNLDIINAISDRTPNLCKLSPAGQHH 310 EAFENA+ V+ A+GGSTN ++HL AIA +G++L+LD I P + L P+G+ Sbjct: 257 KEAFENAIRVNAAIGGSTNAVIHLKAIAGRIGVELDLDDWTRIGRGMPTIVDLQPSGRFL 316 Query: 311 IEDLYFAGGVQAVMNELSKKGLL-HLNLMTVTGKTVGENIKDANVKNYN-VIRPIDNPYS 368 +E+ Y+AGG+ AV+ L + L+ + N +TV GK++GEN +DA + + VIR +DNP Sbjct: 317 MEEFYYAGGLPAVLRRLGEANLIPNPNALTVNGKSIGENTRDAPIYGEDEVIRTLDNPIR 376 Query: 369 ETGGLVIVRGNLAPDGAVVKKSAVPPKLMKHRGPARVFESGEEVFEAILKG---KIQKGD 425 GG+ ++RGNLAP GAV+K SA P+LM+HRG A VFE+ ++++A + + Sbjct: 377 ADGGICVLRGNLAPLGAVLKPSAATPELMQHRGRAVVFEN-FDMYKARINDPELDVDANS 435 Query: 426 VIVIRYEGPKGGPGMRE---MLSPTSALAGVGLIEDVALITDGRFSGATRGACFGHVSPE 482 ++V++ GPKG PGM E M P LA + D+ I+D R SG G HV+PE Sbjct: 436 ILVMKNCGPKGYPGMAEVGNMGLPAKLLAQG--VTDMVRISDARMSGTAYGTVVLHVAPE 493 Query: 483 AAERGPIAAVQDGDMISIDIENKTLTLEVPEEEIKRRLEILPPFEPKVKKGYLYRYSKLV 542 AA GP+AAV++GD I +D + L L++ + E+ R+ L P + + GY Y V Sbjct: 494 AAAGGPLAAVKEGDWIELDCASGRLHLDIADTELAARMADLQPPQNLIVGGYRQLYIDHV 553 Query: 543 RSASTG 548 A G Sbjct: 554 LQADQG 559 Lambda K H 0.318 0.137 0.394 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 788 Number of extensions: 45 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 552 Length of database: 578 Length adjustment: 36 Effective length of query: 516 Effective length of database: 542 Effective search space: 279672 Effective search space used: 279672 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory