Align 4-aminobutyrate aminotransferase GabT; (S)-3-amino-2-methylpropionate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.22 (characterized)
to candidate Pf1N1B4_4910 Gamma-aminobutyrate:alpha-ketoglutarate aminotransferase (EC 2.6.1.19)
Query= SwissProt::P22256 (426 letters) >FitnessBrowser__pseudo1_N1B4:Pf1N1B4_4910 Length = 430 Score = 435 bits (1119), Expect = e-126 Identities = 209/417 (50%), Positives = 283/417 (67%) Query: 1 MNSNKELMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHP 60 ++ L+++R Q +PRG+ HP+ DRA+ +WDV+G+ YLDF GGI VLN GH HP Sbjct: 5 VDETPHLLRQRDQFVPRGLVTAHPLVIDRAQGSELWDVDGKRYLDFVGGIGVLNIGHNHP 64 Query: 61 KVVAAVEAQLKKLSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVK 120 KVVAAV+AQL+K+SH CFQV+AY+PYL+L + + + + G + K T+G+EAVENAVK Sbjct: 65 KVVAAVQAQLQKVSHACFQVVAYKPYLDLAQRLCEMIGGQESYKAAFFTSGAEAVENAVK 124 Query: 121 IARAATKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISE 180 IARA T RS IAF G +HGRT LTG PY G V+ YP G++ Sbjct: 125 IARAHTNRSAVIAFRGGFHGRTLLGTTLTGMSQPYKQNFGPFAPEVFHTPYPNAYRGVTS 184 Query: 181 DDAIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADE 240 D A+ ++ + APE +AAI+IEPVQG+GGF ++ F+Q LRAL +HGI+LI DE Sbjct: 185 DMALKALDELLATQVAPERVAAIIIEPVQGDGGFLSAPTEFLQALRALTAKHGIVLILDE 244 Query: 241 VQSGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAG 300 +Q+G GRTG F + G+ PDL T AKS+AGG PL+GV G+AE+MDA PGGLGGTY G Sbjct: 245 IQTGFGRTGKWFGFQHAGIQPDLVTVAKSLAGGLPLSGVVGKAEIMDAPLPGGLGGTYGG 304 Query: 301 NPIACVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIAIELF 360 N ++C AAL V++ +EQE LL + LG++L++GLL + ++P IGDVRG G M+AIEL Sbjct: 305 NALSCAAALAVIEAYEQEQLLARGEALGERLREGLLRLQARYPRIGDVRGSGFMLAIELI 364 Query: 361 EDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEII 417 +D D PDA L ++ AR GL+++ CG Y NVLR L PL +AQ+ + L+I+ Sbjct: 365 KDDDARTPDADLNQRLIDEARAGGLLVIKCGVYRNVLRFLAPLVTSEAQVDEALQIL 421 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 566 Number of extensions: 20 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 430 Length adjustment: 32 Effective length of query: 394 Effective length of database: 398 Effective search space: 156812 Effective search space used: 156812 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory