GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisI in Pseudomonas fluorescens FW300-N2C3

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate AO356_06965 AO356_06965 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>FitnessBrowser__pseudo5_N2C3_1:AO356_06965
          Length = 445

 Score =  250 bits (638), Expect = 1e-70
 Identities = 144/403 (35%), Positives = 232/403 (57%), Gaps = 15/403 (3%)

Query: 391 IIENVRDKGNSALLEYTEKFDGVKLSNPVLNAPFPEEYFE----GLTEEMKEALDLSIEN 446
           II+ VR++G++AL+E+T+KFDG+++++ + +   P E  E     +T   +EAL+ +   
Sbjct: 42  IIKAVRERGDAALVEFTQKFDGLQVAS-MADLILPRERLELALTRITVPQREALEKAASR 100

Query: 447 VRKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTAILPSTALMLGVPAQVAQ 506
           VR +H  Q        E    VL  +   P+++ GLY+PGG A  PS+ LM  +PA+VA 
Sbjct: 101 VRDYHERQKQDSWSYTEADGTVLGQKVT-PLDRAGLYVPGGKASYPSSVLMNAIPAKVAG 159

Query: 507 CKEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPKVDKILG 566
             E+V   P  +  G+++  V+  A   G  ++   GGAQAVAA+AYGTE++P+VDK++G
Sbjct: 160 VTEVVMVVPTPR--GEINELVLAAACIAGVDRVFTIGGAQAVAALAYGTESVPRVDKVVG 217

Query: 567 PGNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAEHGIDSQ 626
           PGN +V  AK +V         IDM AGPSE+LV+ D   D D++A DL SQAEH  D+Q
Sbjct: 218 PGNIYVATAKRHVFGQV----GIDMIAGPSEILVVCDGQTDPDWIAMDLFSQAEHDEDAQ 273

Query: 627 VILVGVNLSEKKIQEIQDAVHNQALQLPRVDIVRKCI-AHSTIVLCDGYEEALEMSNQYA 685
            ILV  +   + + ++  ++      + R +I+   I     ++  D   +A+E++N+ A
Sbjct: 274 AILVSPDA--EFLDKVAASIDKLLPTMDRAEIINTSINGRGALIKVDDMAQAIEVANRIA 331

Query: 686 PEHLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQYSGANTA 745
           PEHL L +A+   ++  + +AG++F+G +T E+ GDY +G NH LPT G AR  S     
Sbjct: 332 PEHLELSVADPQAWLPQIRHAGAIFMGRHTSEALGDYCAGPNHVLPTSGTARFSSPLGVY 391

Query: 746 TFQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIRM 788
            FQK  +    + +G   +G+    +A+ E L  H  + + R+
Sbjct: 392 DFQKRSSIIFCSEQGASELGKTASVLARGESLSAHARSAEYRI 434


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 726
Number of extensions: 34
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 445
Length adjustment: 37
Effective length of query: 762
Effective length of database: 408
Effective search space:   310896
Effective search space used:   310896
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory