Align acetolactate synthase (EC 2.2.1.6) (characterized)
to candidate AO356_28690 AO356_28690 acetolactate synthase
Query= BRENDA::O53554 (515 letters) >FitnessBrowser__pseudo5_N2C3_1:AO356_28690 Length = 513 Score = 394 bits (1011), Expect = e-114 Identities = 241/518 (46%), Positives = 306/518 (59%), Gaps = 13/518 (2%) Query: 1 MNGAQALINTLVDGGVDVCFANPGTSEMHFVAALDAVPRMRGMLTLFEGVATGAADGYAR 60 MNGAQ ++ V G++ CFANPGT+E+ VAA+ + P ++ +L+LFEGV TGAADGY R Sbjct: 1 MNGAQLIVKAAVASGIEYCFANPGTTEIPLVAAMASAPALKPVLSLFEGVCTGAADGYGR 60 Query: 61 IAGRPAAVLLHLGPGLGNGLANLHNARRARVPMVVVVGDHATYHKKYDAPLESDIDAVAG 120 IAG+PA L HLGPG NG+ANLHNARRA P+V V+GDHA++H YD PL SDI A+AG Sbjct: 61 IAGKPAMTLTHLGPGFANGIANLHNARRANTPIVNVIGDHASWHVNYDPPLASDIQALAG 120 Query: 121 TVSGWVRRTEAAADVGADAEAAI-AASRSGSQIATLILPADVCWSDGAHAAAGVPAQAAA 179 +VS WVR + A+ VG D + A+ AA ++ QIA+LILP D+ + H A QA Sbjct: 121 SVSKWVRTSRTASGVGEDFQEAVRAAWQANGQIASLILPMDLQANTVQHEKAFTALQAPV 180 Query: 180 ---APVDVGPVAGVLRSGEPAMMLIGGDATRGPGLTAAARIVQATGARWLCETFPTCLER 236 A V VA LR G + ++G GL AA R+ Q G R ETFP R Sbjct: 181 RRFAGDRVEAVAQALRDGRRLVFIVGDQGLSVAGLEAAGRLAQLPGVRLFAETFPRLSYR 240 Query: 237 GAGIPAVERLAYFAEGAAAQLDGVKHLVLAGARSPVSFFAYPGMPSDLVPAGCEVHVLAE 296 G G+P ++RL YF E A LD +V AG P+S+F Y G+ S L + LAE Sbjct: 241 GGGLPDLDRLPYFPEVAIEILDQYDAVVCAGVPEPISYFGYEGIASRLAERE-RLLCLAE 299 Query: 297 PG-GAADALAALADEV-APGTVAPVAGASRPQLPTGD--LTSVSAADVVGALLPERAIVV 352 G A AL ALAD + AP V G +LP G+ LT S V+ A LP+ IV Sbjct: 300 VGDDVAGALTALADALEAPAYVPTPTGI---ELPPGEATLTPQSVGQVLAASLPDDCIVS 356 Query: 353 DESNTCGVLLPQATAGAPAHDWLTLTGGAIGYGIPAAVGAAVAAPDRPVLCLESDGSAMY 412 E TCG A+A A H LT TGGAIG GIP GAA+A V CL+SDGSA Y Sbjct: 357 VEGGTCGYPFFTASAHAARHRVLTNTGGAIGQGIPVGFGAAMAERGNKVFCLQSDGSAQY 416 Query: 413 TISGLWSQARENLDVTTVIYNNGAYDILRIELQRVGAGSDPGPKALDLLDISRPTMDFVK 472 TI LWS ARE L V +I N Y IL+ EL+R G ++ GP+AL L + RP +D+ Sbjct: 417 TIQTLWSIAREQLPVVILIAANHRYAILQNELRRFGM-TELGPEALSLTVLDRPRIDWKA 475 Query: 473 IAEGMGVPARRVTTCEEFADALRAAFAEPGPHLIDVVV 510 +A+G G+PA V T E AL A A+ GP LI++ + Sbjct: 476 LAKGYGLPASTVHTNGELQRALANAKADGGPCLIEMAL 513 Lambda K H 0.318 0.134 0.402 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 585 Number of extensions: 31 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 513 Length adjustment: 35 Effective length of query: 480 Effective length of database: 478 Effective search space: 229440 Effective search space used: 229440 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory