Align Glutamyl-tRNA(Gln) amidotransferase subunit A; Glu-ADT subunit A; EC 6.3.5.7 (uncharacterized)
to candidate Pf6N2E2_1873 Amidase
Query= curated2:Q2S4S2 (514 letters) >FitnessBrowser__pseudo6_N2E2:Pf6N2E2_1873 Length = 476 Score = 161 bits (408), Expect = 4e-44 Identities = 149/510 (29%), Positives = 220/510 (43%), Gaps = 77/510 (15%) Query: 3 YPTFTDARRALDAGETSCEALVSSFLERIDARDNEINAFTSVDQDGALNHARYLDSQRER 62 Y T T+A A S ++ + + RI+A ++++NA T D AL A+ + R Sbjct: 10 YLTATEAVAQFKAKTLSPVDVLRAQIARIEAVNSKLNAITYTHFDRALKEAQVAEGLYMR 69 Query: 63 G-NPRPLAGLVLAVKDNICIRGYPVSCGSKMLADFSSLYDATVIDRLRDAGAIFIGKTNC 121 G RPL G+ A+KD I+G ++ GSK ADF A ++RL DAGAI +T Sbjct: 70 GVATRPLEGVTCAIKDGNPIKGEIMTVGSKAFADFIPDESAPTVERLIDAGAIVHCRTTM 129 Query: 122 DEFAMGSSNETSHFGPVRNPHAPEYVPGGSSGGSAAAVAAGLCHAALGSDTGGSVRQPAA 181 EF + ++ +G RN PEY GGSSGG+ +A+AAG+ A G+D GGS+R PAA Sbjct: 130 SEFGHSAITKSPLWGVTRNAWNPEYSSGGSSGGAGSALAAGMTTLADGTDGGGSIRVPAA 189 Query: 182 FCGTVGLKPTYGRVSRSGLVAFASSLDVIGPLTRSAEDAATILNVIAGEDERDSTSAPVD 241 G G KP +GR + ++ +L GPL RS D A + NV++G+ +D S P Sbjct: 190 LGGLFGYKPPFGR-NPVDTLSPGETLMHYGPLARSVADCALMQNVMSGQHPKDLYSLPDQ 248 Query: 242 VPDYTEGLGDGVEGLRLGLPEEYFAEGLDDDIRRMVTEQVDRLDDAGATVEEVSLPHTEY 301 V T G+ + G R+ L + ++R + G VEE+ LP Sbjct: 249 VVLPT--FGESLRGRRIALSMNLGFYEVSKEVRENTLAAAEVFRGLGCIVEEIQLPWERA 306 Query: 302 GVATYYLVATAEASSNLARYDGIRYGHRADLQETKQALQERREELKEELASARAQGDEAR 361 V +L+ ++ + + DL L E R +L Sbjct: 307 SVEDAWLI----------KWQALLWAQCGDL------LPEFRNDL--------------- 335 Query: 362 ADTLEAQLDDEQSTLDALYTRSRTEGFGDEVKRRIMLGTYALSAGYYDKYYEKAQRVRTL 421 D +L ++ S LD L RT ++ K + A +GY Sbjct: 336 -DPFVVELMEQGSHLD-LRRFYRT----NQTKHEMHQALVAAMSGY-------------- 375 Query: 422 IRHDFERAFEDVDALITPTTPTPPFRLGEKTDDPL--------EMYLNDIYTVTAN-LAG 472 D LI PTT T DPL Y+ + T N L+ Sbjct: 376 ------------DLLIAPTTATTQIPADRHDADPLLINGKAIDRPYVGWLLTTPFNLLSQ 423 Query: 473 LPGLTVPIGEHPDTPGLPVGLQVLGPHFDE 502 P +VP G T +P GLQ++GP +D+ Sbjct: 424 YPVFSVPSGV-DQTTSIPTGLQIIGPAYDD 452 Lambda K H 0.316 0.135 0.386 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 510 Number of extensions: 22 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 514 Length of database: 476 Length adjustment: 34 Effective length of query: 480 Effective length of database: 442 Effective search space: 212160 Effective search space used: 212160 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory