GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hisE in Desulfovibrio vulgaris Hildenborough

Align Histidine biosynthesis trifunctional protein; EC 3.5.4.19; EC 3.6.1.31; EC 1.1.1.23 (characterized)
to candidate 206223 DVU0796 histidinol dehydrogenase

Query= SwissProt::P00815
         (799 letters)



>MicrobesOnline__882:206223
          Length = 436

 Score =  232 bits (592), Expect = 3e-65
 Identities = 157/412 (38%), Positives = 225/412 (54%), Gaps = 18/412 (4%)

Query: 387 LVNPIIENVRDKGNSALLEYTEKFDGVKLSNPVLNAPFPEEYFEGLTEEMKEALDL---S 443
           +V  I+  VR KG+ AL EYT +FD    +  +L+    EE  + +     + + +   +
Sbjct: 34  VVRDILAAVRSKGDEALAEYTRRFDCPDFTPALLHVT-SEEVAQAVASVPADDIAIIRQA 92

Query: 444 IENVRKFHAAQLPTETLEVETQPGVLCSRFPRPIEKVGLYIPGGTA---ILPSTALMLGV 500
            +N+R FH AQ       V    G +  +   P+++ GLY+PGG      L S+ LM  +
Sbjct: 93  ADNIRSFHEAQKERSWF-VTHDDGTILGQKVTPVDRAGLYVPGGKGGDTPLLSSLLMNAI 151

Query: 501 PAQVAQCKEIVFASPPRKSDGKVSPEVVYVAEKVGASKIVLAGGAQAVAAMAYGTETIPK 560
           PAQVA    I  ASPPR  DG ++P ++  A  +G + I+ AG A AVAA A+GT+TI  
Sbjct: 152 PAQVAGVTSITVASPPRP-DGTLNPHLLAAAHILGITDIIRAGSAWAVAAFAFGTQTIAP 210

Query: 561 VDKILGPGNQFVTAAKMYVQNDTQALCSIDMPAGPSEVLVIADEDADVDFVASDLLSQAE 620
           VD I GPGN FVT AK  VQ       +IDM AGPSE+L++AD  A  D+VA+D+LSQAE
Sbjct: 211 VDVIAGPGNIFVTTAKRMVQGRV----AIDMIAGPSEILILADATARPDWVAADMLSQAE 266

Query: 621 HGIDSQVILVGVNLSEKKIQEIQDA-VHNQALQLPRVDIVRKCIAH-STIVLCDGYEEAL 678
           H   +  ILV    +E  + E   A +  Q   LPR DI RK +A    +V+    + A+
Sbjct: 267 HDPLASSILV---TTEPALAEAVTAELERQLATLPRADIARKALADWGAVVVVPDMDVAV 323

Query: 679 EMSNQYAPEHLILQIANANDYVKLVDNAGSVFVGAYTPESCGDYSSGTNHTLPTYGYARQ 738
            ++N+ APEHL +  A   +    + +AG++F+G Y+PE  GDY +G NH LPT G AR 
Sbjct: 324 AIANRVAPEHLEVLTAQPWELAGSLRHAGALFLGPYSPEPLGDYFAGPNHVLPTMGTARF 383

Query: 739 YSGANTATFQKFITAQNITPEGLENIGRAVMCVAKKEGLDGHRNAVKIRMSK 790
            S  +  TF K  +    +    E    AV  +A+ EGL+ H  +   R S+
Sbjct: 384 SSALSVQTFCKRTSIIAASRAFAERNADAVARLARLEGLEAHARSAASRNSQ 435


Lambda     K      H
   0.315    0.133    0.371 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 636
Number of extensions: 31
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 799
Length of database: 436
Length adjustment: 37
Effective length of query: 762
Effective length of database: 399
Effective search space:   304038
Effective search space used:   304038
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Apr 09 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory