Align Acetyl-coenzyme A synthetase; AcCoA synthetase; Acs; Acetate--CoA ligase; Acyl-activating enzyme; EC 6.2.1.1 (characterized)
to candidate 208482 DVU2969 acetoacetyl-CoA synthase
Query= SwissProt::P27550 (652 letters) >MicrobesOnline__882:208482 Length = 661 Score = 746 bits (1927), Expect = 0.0 Identities = 367/623 (58%), Positives = 462/623 (74%), Gaps = 8/623 (1%) Query: 25 EAMYQQSINVPDTFWGEQG-KILDWIKPYQKVKNTSFAPGNVSIKWYEDGTLNLAANCLD 83 EA+ +++ P+ FWGE+ +++DW KP+ V + I+W++ G LN+A NCLD Sbjct: 35 EALVRRAAEDPEGFWGERAAQLIDWFKPWDTVLDADM--NEPRIEWFKGGRLNVAHNCLD 92 Query: 84 RHLQENG-DRTAIIWEGDDASQSKHISYKELHRDVCRFANTLLELGIKKGDVVAIYMPMV 142 RH+ N ++ AIIW+G+ + ++Y+ L+ +V RFA L ++G+ KGD V++YMPM+ Sbjct: 93 RHVAGNRRNKAAIIWQGEPEEDVRVLTYQMLYDEVRRFAAVLRKMGVHKGDRVSLYMPMI 152 Query: 143 PEAAVAMLACARIGAVHSVIFGGFSPEAVAGRIIDSNSRLVITSDEGVRAGRSIPLKKNV 202 PE AVAMLACARIGAVHS++F GFS ++ RI D +++V+T+D +RAGR IPLK NV Sbjct: 153 PELAVAMLACARIGAVHSIVFAGFSAVSLQNRIHDCEAKVVVTADAVLRAGRRIPLKVNV 212 Query: 203 DDALKNPNVTSVEHVVVLKRTGGKIDWQEGRDLWWHDLVEQAS--DQHQAEEMNAEDPLF 260 D+A++ SVE VVV+ R ++ +EGRDLWWH+++ + EEM+AED LF Sbjct: 213 DEAVRQ--CPSVEKVVVVNRGSLEVTMEEGRDLWWHEVMADRTLDVDRPCEEMDAEDMLF 270 Query: 261 ILYTSGSTGKPKGVLHTTGGYLVYAALTFKYVFDYHPGDIYWCTADVGWVTGHSYLLYGP 320 ILYTSGSTGKPKGV+HTTGGYL YAA T ++VFD D+YWCTAD+GW+TGHSY++YGP Sbjct: 271 ILYTSGSTGKPKGVVHTTGGYLTYAAHTTQWVFDVQDDDVYWCTADIGWITGHSYIVYGP 330 Query: 321 LACGATTLMFEGVPNWPTPARMAQVVDKHQVNILYTAPTAIRALMAEGDKAIEGTDRSSL 380 LA GAT+LMFEGVP+WP+P R ++V+K +VNI YTAPT +RALM EG E D SSL Sbjct: 331 LALGATSLMFEGVPSWPSPDRFWRIVEKFRVNIFYTAPTVVRALMREGTDWTERHDLSSL 390 Query: 381 RILGSVGEPINPEAWEWYWKKIGNEKCPVVDTWWQTETGGFMITPLPGATELKAGSATRP 440 R+LGSVGEPINPEAW WY IG + P+VDTWWQTETGG MI+ LP AT LK GSAT+P Sbjct: 391 RVLGSVGEPINPEAWMWYHTHIGKGRLPIVDTWWQTETGGIMISGLPYATTLKPGSATQP 450 Query: 441 FFGVQPALVDNEGNPLEGATEGSLVITDSWPGQARTLFGDHERFEQTYFSTFKNMYFSGD 500 GV A+V +G+P G LVI WPG R +FG ER+ TYF F MY SGD Sbjct: 451 LPGVDAAIVRPDGSPAGPNEGGHLVIRKPWPGMLRGIFGSPERYRSTYFERFPGMYESGD 510 Query: 501 GARRDEDGYYWITGRVDDVLNVSGHRLGTAEIESALVAHPKIAEAAVVGIPHNIKGQAIY 560 GAR D DGY+WI GR+DDV+NVSGHR+GTAE+ESALVAHP +AEAAVVG+PH +KG+AIY Sbjct: 511 GARTDTDGYFWIMGRLDDVINVSGHRMGTAEVESALVAHPSVAEAAVVGMPHAVKGEAIY 570 Query: 561 AYVTLNHGEEPSPELYAEVRNWVRKEIGPLATPDVLHWTDSLPKTRSGKIMRRILRKIAA 620 AYVTL E + EL AE+R WVRKEIGP+ATPDVL + + LPKTRSGKIMRRILRKIAA Sbjct: 571 AYVTLGADAEETEELRAELRAWVRKEIGPIATPDVLQFAEGLPKTRSGKIMRRILRKIAA 630 Query: 621 GDTSNLGDTSTLADPGVVEKLLE 643 G TS GDTSTLADPGVV L+E Sbjct: 631 GATSEFGDTSTLADPGVVSDLIE 653 Lambda K H 0.317 0.135 0.421 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1389 Number of extensions: 64 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 652 Length of database: 661 Length adjustment: 38 Effective length of query: 614 Effective length of database: 623 Effective search space: 382522 Effective search space used: 382522 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 54 (25.4 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory