Align 2-oxoacid:ferredoxin oxidoreductase 2, subunit alpha; Short=OFOR2; EC 1.2.7.11 (characterized, see rationale)
to candidate WP_083763501.1 AMB_RS10840 2-oxoacid:acceptor oxidoreductase subunit alpha
Query= uniprot:OFOA2_SULTO (628 letters) >NCBI__GCF_000009985.1:WP_083763501.1 Length = 565 Score = 215 bits (547), Expect = 5e-60 Identities = 167/580 (28%), Positives = 265/580 (45%), Gaps = 69/580 (11%) Query: 10 GAQGLGVDTSANIFGNAVAKAGYYLFGNREYYSNIKGRHSYFEVVISEKPIRSLSSYVNI 69 G+ G GV T+AN+F +A A+AGYY R I+G + V + +PI S+ +I Sbjct: 3 GSGGAGVMTAANMFLDAAAEAGYYALFGRSSGPQIRGGEAAALVRLGVEPITSVDDTFDI 62 Query: 70 LASFDAETVFQHFTETKEYLIYNVEYENTTVDLVKSMEPEMAEQVKEALSKERLGF---T 126 + + D + V + E LSK + + Sbjct: 63 MLAIDWQGVQRFAAELP-------------------------------LSKNSIVICDPS 91 Query: 127 IKDVLEYLKRRGVKVIGFNYTELIKKIADTFKVPMSVVERAKNMIAVGASYGLLGLKFDY 186 DV + + G K++ + +L K+I NMIA+GA L+G+ Sbjct: 92 AGDVPDVYVKTGAKIVHLHMKDLAKEIPGG----------RPNMIALGAVAELIGIPVGP 141 Query: 187 LKDAISSTFKNELFIKFNTMAAELGYNSVP-----NVYKLQEYKI-EKQRIQVDGNTISA 240 L + + + K + + A + + +L K + +R V GN + Sbjct: 142 LTEVLGKSLKKKRADAYEASVAGVKAGAAAAATLGGAKRLAAAKAKDAKRWTVTGNYGAG 201 Query: 241 MGKLAGGLRFQSYYPITPASDESVYIEANQNLDMIVEGNELRKGGVVVVQAEDELAAINM 300 +G + GG+RF + YPITPA++ Y+ + L K G V VQAEDELA+INM Sbjct: 202 LGAIRGGVRFCAAYPITPATEVLEYL-----------ASALPKVGGVFVQAEDELASINM 250 Query: 301 AVGAALTGVRSATATSGPGFSLMSEGISWAGMNEVPVVITYYMRGAPATGLPTRSGQADL 360 +GA+ G S T+T+GPG SLM+EG+ A +E PVV+ R P+TG+ T+ Q+DL Sbjct: 251 CLGASYGGEASITSTAGPGLSLMTEGLGLAVASETPVVVVDVQRVGPSTGIATKCEQSDL 310 Query: 361 KFALNVGHGEFPRIVIASGDHVEIFWDAIWALNLAEKYQTPVIHIIEKTLANAYSVFEEE 420 A+ HG+ P +V+A + + W + LAE QT + + ++ L + ++ + Sbjct: 311 NIAVYGLHGDAPHLVVAPNSVGDCIFTTQWGVYLAESLQTACLVMSDQALGQSRAIIDAP 370 Query: 421 LITNRPYVIERGKIVKPT-SDYFNRFEVTEDGISPRVFLGQASIFYTGD--EHNEEGHIT 477 + +V +R P + F R+ T GISP GQ YT D EH E G + Sbjct: 371 --ADVAFVGKRLVAEAPAEGEVFKRYANTASGISPMPVPGQPGCQYTSDGLEHTETGTPS 428 Query: 478 ENSINRMKMYEKRNKKLETADKEIPEEQRVNIVGDADIVLLTWGSPKGAILDAMEELSKD 537 S + +KR +KL D I G+ DI ++TWGS GA +A+ D Sbjct: 429 SQSSDHTLQLDKRQRKLTNFDY---GNHWATIEGEGDIAVITWGSCTGAAREAVARAKAD 485 Query: 538 GIKTMMVQVKMFNPYPKNLMKKILSGKSKIIAVENNYNAQ 577 GI ++ +++ +P + L G SKI+ VE ++ Q Sbjct: 486 GINAKLISLRLISPIRPQHLADALKGVSKILVVEQSHQGQ 525 Lambda K H 0.317 0.135 0.380 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 778 Number of extensions: 38 Number of successful extensions: 7 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 628 Length of database: 565 Length adjustment: 37 Effective length of query: 591 Effective length of database: 528 Effective search space: 312048 Effective search space used: 312048 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Aug 03 2021. The underlying query database was built on Aug 03 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code, or see changes to Amino acid biosynthesis since the publication.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory