GapMind for catabolism of small carbon sources

 

Alignments for a candidate for D-LDH in Shewanella sp. ANA-3

Align Respiratory FAD-dependent D-lactate dehydrogenase Dld; EC 1.1.2.4 (characterized, see rationale)
to candidate 7025755 Shewana3_2905 FAD linked oxidase domain-containing protein (RefSeq)

Query= uniprot:Q8EGS3
         (934 letters)



>FitnessBrowser__ANA3:7025755
          Length = 934

 Score = 1649 bits (4269), Expect = 0.0
 Identities = 807/934 (86%), Positives = 864/934 (92%)

Query: 1   MSINYKEVINDLRTQLGDRPVTDDPVRRFAWSTDASYFRIVPEVVVHAETLEQVKLTLTV 60
           MSINY  V  +L  QLG+  V++DPVRRFAWSTDASYFRIVPE+VVHA+TLEQ K TL +
Sbjct: 1   MSINYDAVYKELIQQLGESAVSNDPVRRFAWSTDASYFRIVPEIVVHADTLEQAKQTLAI 60

Query: 61  ARKHNAPVTFRAAGTSLSGQAIGEGILLILGHDGFRKIEVSSDAKQITLGAAVIGSDANA 120
           AR H  PVTFRAAGTSLSGQAIGEGILLILGHDGFR I++S D+ +ITLGAAVIG+DANA
Sbjct: 61  ARAHKVPVTFRAAGTSLSGQAIGEGILLILGHDGFRTIDISPDSNKITLGAAVIGADANA 120

Query: 121 VLAPLNRKIGPDPATIASAKIGGIVANNASGMCCGTAQNSYQTIASAKLLFADGTELDTG 180
            L PLN+KIGPDPAT+ASA +GGIV+NNASGMCCGTAQNSYQTIASAKLLFADGTEL+TG
Sbjct: 121 ALKPLNKKIGPDPATLASAMVGGIVSNNASGMCCGTAQNSYQTIASAKLLFADGTELNTG 180

Query: 181 CEKSKAEFAKTHGKLLQDLSELSHLTRHNSALAERIRKKYSIKNTTGYGINSLIDFTDPF 240
           C+KSKA F ++HG LL  L+ L+ LTR N  LA+RIRKKYSIKNTTGY IN+L+DF DPF
Sbjct: 181 CDKSKAAFTQSHGDLLDSLASLAKLTRSNEVLAQRIRKKYSIKNTTGYSINALVDFEDPF 240

Query: 241 DIINHLMVGMEGTLAFINEVTYHTVNEAKFKASAMAVFHNMEDAARAIPLINGESVSAAE 300
           D+INHL+VG EGTLAF+ EVTYHTV+EAKFKASAMAVF NM DAA AIP I G+SV+AAE
Sbjct: 241 DLINHLIVGAEGTLAFVEEVTYHTVDEAKFKASAMAVFFNMVDAASAIPPIIGDSVAAAE 300

Query: 301 LLDWPSIKAVTGKPGMPDWLSELPALSAILLIESRADDAQTLEHYTQDVTAKLAGFDFIR 360
           LLDW SIKAVTGK GMPDWL+ELP  +AILLIESRA+DAQTLE YTQDV AKLA     R
Sbjct: 301 LLDWASIKAVTGKKGMPDWLNELPEGAAILLIESRANDAQTLESYTQDVIAKLAHIKTER 360

Query: 361 PMEFSTNPAVYDKYWAMRKGLFPIVGGERPKGTSVIIEDVAFELEHLAAAAHDITELFHK 420
           P+ FS++  VY KYWAMR GLFPI+GGERPKG+SVIIEDVAF +EHLAAAA D+TELFHK
Sbjct: 361 PISFSSDANVYSKYWAMRSGLFPIIGGERPKGSSVIIEDVAFNVEHLAAAAADLTELFHK 420

Query: 421 HGYPEGCIYGHALAGNFHFIITPAFTTQADIDRFHAFMDDIADMVINKYNGSMKAEHGTG 480
           HGYPEG IYGHALAGNFHFIITP F +QADI+RF  FM D+A+MVI+KY+GSMKAEHGTG
Sbjct: 421 HGYPEGVIYGHALAGNFHFIITPTFASQADIERFQGFMQDVAEMVIHKYDGSMKAEHGTG 480

Query: 481 RAVAPFVEKEWGQDAYTLMKNIKQVFDPQGILNPGVILNDDSNIHVKNIKPCPVVDDFVD 540
           RAVAPFVE EWG DAYTLMK IK +FDP+G+LNPGVILNDDS +HVKNIKPCPVVDDFVD
Sbjct: 481 RAVAPFVEMEWGADAYTLMKRIKHIFDPEGLLNPGVILNDDSTVHVKNIKPCPVVDDFVD 540

Query: 541 KCIECGFCEKTCPTSALNFSPRQRIATLREIERLEQSGDKAAAAKMRADAKYDVIDTCAA 600
           KCIECGFCEKTCPTSALNFSPRQRIATLREIERLEQSGDKAAA KMRADAKYDVIDTCAA
Sbjct: 541 KCIECGFCEKTCPTSALNFSPRQRIATLREIERLEQSGDKAAAEKMRADAKYDVIDTCAA 600

Query: 601 CQLCTIACPVDNSMGQLVRKLRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHK 660
           CQLCTIACPVDNSMGQLVRKLRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHK
Sbjct: 601 CQLCTIACPVDNSMGQLVRKLRTPYISTTEQKVLDFQAKHFGAVNQVISTGFDVLGVIHK 660

Query: 661 ITGDGITNALMKTGRLISKEVPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGP 720
           ITGDGITNALMKTGRL+SKEVPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGP
Sbjct: 661 ITGDGITNALMKTGRLLSKEVPYWNPDFPKGGKLPKPSPAKAGQETVVYFPACGGRTFGP 720

Query: 721 TPKDPDNRTLPEVVVTLLERAGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVL 780
           TPKDPDNRTLPEVVVTLLERAGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDV+
Sbjct: 721 TPKDPDNRTLPEVVVTLLERAGYNVITPEKTRDLCCGQMWESKGDFKNADAKRQELIDVV 780

Query: 781 SKMSNGGKIPVLVDALSCTYRTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGC 840
           SKMSNGGKIPVLVDALSCTYRTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGC
Sbjct: 781 SKMSNGGKIPVLVDALSCTYRTLTGNPQVQITDLVEFMHDKLLDKLSINKKVNVALHLGC 840

Query: 841 SARKMKLEPKMQAIANACSAQVLKPAGIECCGYAGEKGLYKPEINASALRNIKKLIPVEV 900
           SARKMKLEPKMQAIA+ACS+QV KPAGI+CCGYAGEKGLYKPEINASALRNIKKLIPVE+
Sbjct: 841 SARKMKLEPKMQAIADACSSQVHKPAGIDCCGYAGEKGLYKPEINASALRNIKKLIPVEI 900

Query: 901 KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR 934
           KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR
Sbjct: 901 KEGYYANRMCEVGLTQHSGISYRHLAYLLEECSR 934


Lambda     K      H
   0.319    0.135    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2460
Number of extensions: 82
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 934
Length of database: 934
Length adjustment: 43
Effective length of query: 891
Effective length of database: 891
Effective search space:   793881
Effective search space used:   793881
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 57 (26.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory