Align dicarboxylate TRAP transporter (succinate, fumarate, L-malate, and alpha-ketoglutarate), large permease component (characterized)
to candidate 7024207 Shewana3_1414 TRAP dicarboxylate transporter, DctM subunit (RefSeq)
Query= reanno::PV4:5208943 (465 letters) >FitnessBrowser__ANA3:7024207 Length = 465 Score = 809 bits (2089), Expect = 0.0 Identities = 413/465 (88%), Positives = 439/465 (94%) Query: 1 MTIATLFISLFLCMLLGMPIAIALGFSSMLTILLFSDDSLASVALKLYESTSEHYTLLAI 60 M IATLF +L +CM LGMPIAIALGFSSMLTIL FS+DSLASVALKLYES+SEHYTLLAI Sbjct: 1 MAIATLFTALLVCMFLGMPIAIALGFSSMLTILFFSNDSLASVALKLYESSSEHYTLLAI 60 Query: 61 PFFILSSAFLSTGGVARRIIDFAMDSVGHIRGGLAMASVMACMLFAAVSGSSPATVAAIG 120 PFFILSSAFLSTGGVARRIIDFAMDS+GHIRGGLAMASVMACMLFAAVSGSSPATVAAIG Sbjct: 61 PFFILSSAFLSTGGVARRIIDFAMDSIGHIRGGLAMASVMACMLFAAVSGSSPATVAAIG 120 Query: 121 SIVIVGMVRAGYPEKFAAGVITTSGTLGILIPPSIVMLVYAAATEVSAARMFMAGLIPGL 180 SIVIVGMV+AGYPEKFAAGVITTSGTLGILIPPSIVMLVYAAATEVSAARMFMAGLIPGL Sbjct: 121 SIVIVGMVKAGYPEKFAAGVITTSGTLGILIPPSIVMLVYAAATEVSAARMFMAGLIPGL 180 Query: 181 MMGLLLMLAIYIVARIKKLPSRPFPGFRPLAISSAKAMGGLALIVIVLGSIYGGIASPTE 240 MMG LLM+ IYIVAR K LPSRPFPGF+ L ISSAKA+GGLALI+IVLGSIYGG+ASPTE Sbjct: 181 MMGFLLMIVIYIVARFKNLPSRPFPGFKQLGISSAKALGGLALIIIVLGSIYGGVASPTE 240 Query: 241 AAAVACVYAYFIAVFGYRDIGPLKNVSWRDSGEPLIRAILRNLGFMVLAVFKTPADKEIR 300 A+AVAC+YAYFIAVFGYRDIGPLKNV+WR+ EP+ AI+RNLG M L + KTP DKEIR Sbjct: 241 ASAVACMYAYFIAVFGYRDIGPLKNVAWRNPNEPIPSAIVRNLGHMALGLIKTPIDKEIR 300 Query: 301 HVVRDGAKVSIMLLFIIANAMLFAHVLTTERIPHLIAETIVGMGLPVWGFLIIVNLLLLA 360 HVVRDGAKVSIMLLFIIANAMLFAHVLTTERIPH+IAE IVGMGLP WGFLIIVNLLLLA Sbjct: 301 HVVRDGAKVSIMLLFIIANAMLFAHVLTTERIPHIIAEHIVGMGLPAWGFLIIVNLLLLA 360 Query: 361 AGNFMEPSAILLIMAPILFPIATQLGIDPIHLGIIMVVNMEIGMLTPPVGLNLFVTAGIT 420 AGNFMEPSAI+LIMAPILFPIAT LGIDPIHLGIIMVVNMEIGMLTPPVGLNLFVTAGIT Sbjct: 361 AGNFMEPSAIVLIMAPILFPIATHLGIDPIHLGIIMVVNMEIGMLTPPVGLNLFVTAGIT 420 Query: 421 GRSMGWVIHSCIPWLALLLFFLALITYIPQISLFLPEYIDKLNGY 465 GRS+GWVI S +PWLAL+L FLALITY+PQISLFLPE++DKLNGY Sbjct: 421 GRSIGWVIQSVLPWLALMLAFLALITYVPQISLFLPEFLDKLNGY 465 Lambda K H 0.330 0.144 0.424 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 808 Number of extensions: 15 Number of successful extensions: 1 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 465 Length of database: 465 Length adjustment: 33 Effective length of query: 432 Effective length of database: 432 Effective search space: 186624 Effective search space used: 186624 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 15 ( 7.1 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 40 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory