GapMind for catabolism of small carbon sources

 

Aligments for a candidate for nagB in Shewanella sp. ANA-3

Align D-galactosamine-6-phosphate deaminase AgaS; GalN-6-P deaminase; Glucosamine-6-phosphate deaminase; GlcN-6-P deaminase; EC 3.5.99.-; EC 3.5.99.6 (characterized)
to candidate 7025548 Shewana3_2699 sugar isomerase (SIS) (RefSeq)

Query= SwissProt::A0KYQ7
         (386 letters)



>FitnessBrowser__ANA3:7025548
          Length = 386

 Score =  772 bits (1993), Expect = 0.0
 Identities = 386/386 (100%), Positives = 386/386 (100%)

Query: 1   MLTSPLSPFEHEDSNLLLSAEQLTQYGAFWTAKEISQQPKMWRKVSEQHSDNRTIAAWLT 60
           MLTSPLSPFEHEDSNLLLSAEQLTQYGAFWTAKEISQQPKMWRKVSEQHSDNRTIAAWLT
Sbjct: 1   MLTSPLSPFEHEDSNLLLSAEQLTQYGAFWTAKEISQQPKMWRKVSEQHSDNRTIAAWLT 60

Query: 61  PILAKPQLRIILTGAGTSAYIGDVLAAHIQQHLPLATQQVEAISTTDIVSHPELYLRGNI 120
           PILAKPQLRIILTGAGTSAYIGDVLAAHIQQHLPLATQQVEAISTTDIVSHPELYLRGNI
Sbjct: 61  PILAKPQLRIILTGAGTSAYIGDVLAAHIQQHLPLATQQVEAISTTDIVSHPELYLRGNI 120

Query: 121 PTLLISYGRSGNSPESMAAVELAEQLVDDCYHLAITCNGQGKLANYCADKSHCYLYKLPD 180
           PTLLISYGRSGNSPESMAAVELAEQLVDDCYHLAITCNGQGKLANYCADKSHCYLYKLPD
Sbjct: 121 PTLLISYGRSGNSPESMAAVELAEQLVDDCYHLAITCNGQGKLANYCADKSHCYLYKLPD 180

Query: 181 ETHDVSFAMTSSFTCMYLATLLIFAPNSQALMQCIEMAEHILTERLADIRLQSEQPSKRV 240
           ETHDVSFAMTSSFTCMYLATLLIFAPNSQALMQCIEMAEHILTERLADIRLQSEQPSKRV
Sbjct: 181 ETHDVSFAMTSSFTCMYLATLLIFAPNSQALMQCIEMAEHILTERLADIRLQSEQPSKRV 240

Query: 241 VFLGGGPLKAIAQEAALKYLELTAGQVVSAFESPLGFRHGPKSLVDSHTQVLVMMSSDPY 300
           VFLGGGPLKAIAQEAALKYLELTAGQVVSAFESPLGFRHGPKSLVDSHTQVLVMMSSDPY
Sbjct: 241 VFLGGGPLKAIAQEAALKYLELTAGQVVSAFESPLGFRHGPKSLVDSHTQVLVMMSSDPY 300

Query: 301 TRQYDNDLIQELKRDNQALSVLTLSEELLTGSSGLNEVWLGLPFILWCQILAIYKAIQLK 360
           TRQYDNDLIQELKRDNQALSVLTLSEELLTGSSGLNEVWLGLPFILWCQILAIYKAIQLK
Sbjct: 301 TRQYDNDLIQELKRDNQALSVLTLSEELLTGSSGLNEVWLGLPFILWCQILAIYKAIQLK 360

Query: 361 VSPDNPCPTGQVNRVVQGVNVYPFVK 386
           VSPDNPCPTGQVNRVVQGVNVYPFVK
Sbjct: 361 VSPDNPCPTGQVNRVVQGVNVYPFVK 386


Lambda     K      H
   0.319    0.133    0.392 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 617
Number of extensions: 10
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 386
Length of database: 386
Length adjustment: 30
Effective length of query: 356
Effective length of database: 356
Effective search space:   126736
Effective search space used:   126736
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory