Align Glutarate-semialdehyde dehydrogenase (EC 1.2.1.20) (characterized)
to candidate 7025944 Shewana3_3092 succinate semialdehyde dehydrogenase (RefSeq)
Query= reanno::pseudo13_GW456_L13:PfGW456L13_495 (480 letters) >lcl|FitnessBrowser__ANA3:7025944 Shewana3_3092 succinate semialdehyde dehydrogenase (RefSeq) Length = 482 Score = 715 bits (1845), Expect = 0.0 Identities = 347/482 (71%), Positives = 410/482 (85%), Gaps = 2/482 (0%) Query: 1 MQLKDTQLFRQQAFIDGAWVDADNGQTIKVNNPATGEILGTVPKMGAAETRRAIEAADKA 60 M LKD L RQQ +I+G W DA + +T+ + NPATG ++ +VP MG AET+ AI AA+ A Sbjct: 1 MLLKDPSLLRQQCYINGQWCDAQSKETVAIANPATGAVIASVPVMGQAETQAAIAAAEAA 60 Query: 61 LPAWRALTAKERATKLRRWYELIIENQDDLARLMTLEQGKPLAEAKGEIVYAASFIEWFA 120 LPAWRALTAKER KLRRW+EL+ EN DDLA +MT EQGKPLAEAKGE+ YAASFIEWFA Sbjct: 61 LPAWRALTAKERGVKLRRWFELLNENSDDLALMMTSEQGKPLAEAKGEVTYAASFIEWFA 120 Query: 121 EEAKRIYGDVIPGHQPDKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 EEAKR+YGD IPGHQ DKR++VIKQP+GVTAAITPWNFPAAMITRKA PALAAGCTMV+K Sbjct: 121 EEAKRVYGDTIPGHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVK 180 Query: 181 PASQTPFSAFALAELAQRAGIPAGVFSVVSGSAGDIGSELTSNPIVRKLSFTGSTEIGRQ 240 PA QTPF+A ALA LA+RAGIPAGVFSV++G A IG+E+ SNP+VRKLSFTGST++G + Sbjct: 181 PAPQTPFTALALAVLAERAGIPAGVFSVITGDAIGIGNEMCSNPVVRKLSFTGSTQVGIK 240 Query: 241 LMSECAKDIKKVSLELGGNAPFIVFDDADLDKAVEGAIISKYRNNGQTCVCANRLYIQDG 300 LM +CA +KK+SLELGGNAPFIVFDDA++D AVEGA+I+KYRN GQTCVCANR+Y+Q G Sbjct: 241 LMEQCAPTLKKLSLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAG 300 Query: 301 VYDAFAEKLKVAVAKLKIGNGLEAGTTTGPLIDEKAVAKVQEHIADALSKGATVLAGGKP 360 VYD FA KL +AV KLK+G G+ G TTGPLI+ AV KVQ H+ DALSKGATV+AGGKP Sbjct: 301 VYDEFARKLSIAVGKLKVGEGIGEGVTTGPLINCAAVEKVQSHLEDALSKGATVVAGGKP 360 Query: 361 --MEGNFFEPTILTNVPNNAAVAKEETFGPLAPLFRFKDEADVIAMSNDTEFGLASYFYA 418 + GNFFEPT+LTNV ++ VA+EETFGPLAPLF+F D DVI +NDTEFGLA+YFY Sbjct: 361 HSLGGNFFEPTVLTNVDSSMRVAREETFGPLAPLFKFTDVDDVIKQANDTEFGLAAYFYG 420 Query: 419 RDLGRVFRVAEALEYGMVGVNTGLISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYLCL 478 RD+ V++V EALEYGMVGVNTGLIS EVAPFGG+K+SGLGREGSK+GIE+YLEIKY+C+ Sbjct: 421 RDISLVWKVTEALEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKFGIEEYLEIKYICM 480 Query: 479 GI 480 + Sbjct: 481 SV 482 Lambda K H 0.317 0.135 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 713 Number of extensions: 19 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 480 Length of database: 482 Length adjustment: 34 Effective length of query: 446 Effective length of database: 448 Effective search space: 199808 Effective search space used: 199808 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory