GapMind for catabolism of small carbon sources

 

Alignments for a candidate for glt in Shewanella sp. ANA-3

Align Sodium:dicarboxylate symporter (characterized, see rationale)
to candidate 7026015 Shewana3_3163 sodium:dicarboxylate symporter (RefSeq)

Query= uniprot:A1S570
         (437 letters)



>FitnessBrowser__ANA3:7026015
          Length = 417

 Score =  295 bits (754), Expect = 2e-84
 Identities = 161/412 (39%), Positives = 243/412 (58%), Gaps = 15/412 (3%)

Query: 7   SKIGLTGKILIGMGAGILIGLLLRNFFGGSEWVQDYITEGFFHVIGTIFINSLKMLVVPL 66
           S+I    K+L G   G L+G+LL              T      +G +FI+++KMLV PL
Sbjct: 7   SRIPFWQKVLAGFILGALVGVLLGE------------TATVLKPLGDLFISAIKMLVAPL 54

Query: 67  VFISLVCGTCSLSEPSKLGRLGGKTLAFYLFTTAIALVVAISAAVLVQPGNASLASESMQ 126
           VF ++V    SL   + L RL  KTL  ++ T  +A ++ ++   L+  G  ++   + +
Sbjct: 55  VFCAIVVSITSLGSQTNLKRLSLKTLGMFMLTGTVASLIGLAVGSLIDMGG-TMQLATTE 113

Query: 127 YSAKEAPSLADVLINIVPSNPMKALSEGNMLQIIIFAVIFGFAISHIGERGRRVAALFDD 186
              +  P  A VL++++P NP  +L++G +LQII+FA + G AI+ +GE+   +    + 
Sbjct: 114 VRERNIPGFAQVLLDMIPVNPFASLADGKVLQIIVFAALVGIAINKVGEKAEPLKRTIEA 173

Query: 187 LNEVIMRVVTLIMQLAPYGVFALMGKLALTLGMETLESVIKYFMLVLVVLLFHGFVVYPT 246
             EV+ ++  ++++L P GVF LM  +    G+ TL  + K+   + +  L H   VY  
Sbjct: 174 GAEVMFQLTRMVLKLTPIGVFGLMAWVVGEYGLSTLLPLGKFIAAIYIAALIHMIFVYGG 233

Query: 247 LLKLFSGLSPLMFIRKMRDVQLFAFSTASSNATLPVTMEASEHRLGADNKVASFTLPLGA 306
           L+K  +GLSP+ F RK    QL AFST+SS  TLP +  A E  +G   + ++F +PLGA
Sbjct: 234 LVKFAAGLSPVQFFRKAMPAQLVAFSTSSSFGTLPASTRAVE-TMGVSKRYSAFVMPLGA 292

Query: 307 TINMDGTA-IMQGVATVFIAQVFGIDLTITDYAMVVMTATLASIGTAGVPGVGLVMLAMV 365
           T+NMDG   I   +A +FIAQ++GI L   DY M+ +TAT+AS+GTAGVPG  +VML + 
Sbjct: 293 TMNMDGCGGIYPAIAAIFIAQIYGIPLDTLDYVMIAVTATVASVGTAGVPGSAMVMLTVT 352

Query: 366 LNQVGLPVEGIALILGVDRMLDMVRTAVNVTGDTVATVVIAKSEGALNEAVF 417
           L  +GLP+EGIA I  +DR++DM+RTA NVTGD +  VVI KSE  L+   F
Sbjct: 353 LGVIGLPLEGIAFIAAIDRIIDMIRTATNVTGDMMTAVVIGKSENELDVEQF 404


Lambda     K      H
   0.325    0.139    0.388 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 411
Number of extensions: 14
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 437
Length of database: 417
Length adjustment: 32
Effective length of query: 405
Effective length of database: 385
Effective search space:   155925
Effective search space used:   155925
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory