Align galactofuranose ABC transporter putative ATP binding subunit (EC 7.5.2.9) (characterized)
to candidate 7024900 Shewana3_2074 ABC transporter related (RefSeq)
Query= ecocyc::YTFR-MONOMER (500 letters) >FitnessBrowser__ANA3:7024900 Length = 499 Score = 499 bits (1285), Expect = e-146 Identities = 259/494 (52%), Positives = 349/494 (70%), Gaps = 3/494 (0%) Query: 9 ILRTEGLSKFFPGVKALDNVDFSLRRGEIMALLGENGAGKSTLIKALTGVYHADRGTIWL 68 IL + +SK +PGVKAL++V L GE+ ALLGENGAGKSTL+K +TG D G I Sbjct: 4 ILELKQISKHYPGVKALEDVSLRLFAGEVHALLGENGAGKSTLVKVMTGAQSKDMGDILF 63 Query: 69 EGQAISPKNTAHAQQLGIGTVYQEVNLLPNMSVADNLFIGREPKRFGLLRRKEMEKRATE 128 G+ AQ+ GI TVYQEVNL+PN++VA NLF+G EP+R GL+ K+M A Sbjct: 64 LGEPQHFNTPMDAQKAGISTVYQEVNLVPNLTVAQNLFLGYEPRRLGLIHFKKMYADARA 123 Query: 129 LMASYGFSLDVREPLNRFSVAMQQIVAICRAIDLSAKVLILDEPTASLDTQEVELLFDLM 188 ++ + +DV PL+ +S+A+QQ++AI R + +SAKVL+LDEPTASLD +EV++LF ++ Sbjct: 124 VLTQFKLDIDVSAPLSDYSIAVQQLIAIARGVAMSAKVLVLDEPTASLDAKEVQVLFGIL 183 Query: 189 RQLRDRGVSLIFVTHFLDQVYQVSDRITVLRNGSFVGCRETCELPQIELVKMMLGRELDT 248 QL+ +GV+++F+THFLDQVYQ+SDRITVLRNG F+G T ELPQ +L++ MLGR L Sbjct: 184 NQLKAKGVAIVFITHFLDQVYQISDRITVLRNGQFIGEYLTAELPQPKLIEAMLGRSLQE 243 Query: 249 HAL--QRAGRTLL-SDKPVAAFKNYGKKGTIAPFDLEVRPGEIVGLAGLLGSGRTETAEV 305 + Q RT+ ++ + + ++ KG+I +L V G+ VGLAGLLGSGR+E Sbjct: 244 QLVDKQEKERTVTRAEAVLLSLEDVSVKGSIQSMNLTVPKGQAVGLAGLLGSGRSEVCNA 303 Query: 306 IFGIKPADSGTALIKGKPQNLRSPHQASVLGIGFCPEDRKTDGIIAAASVRENIILALQA 365 +FG+ DSG+ + G+ NL P A GI CPEDRK DGII S+RENIILALQA Sbjct: 304 VFGLDLVDSGSIHLAGQKLNLSQPVDAISAGIALCPEDRKIDGIIGPLSIRENIILALQA 363 Query: 366 QRGWLRPISRKEQQEIAERFIRQLGIRTPSTEQPIEFLSGGNQQKVLLSRWLLTRPQFLI 425 + GW R +S QQEIA+ FI +L I TP ++PIE LSGGNQQKV+L+RWL P L+ Sbjct: 364 RIGWWRYLSNTRQQEIAQFFIDKLQIATPDADKPIEQLSGGNQQKVILARWLAIEPILLV 423 Query: 426 LDEPTRGIDVGAHAEIIRLIETLCADGLALLVISSELEELVGYADRVIIMRDRKQVAEIP 485 LDEPTRGID+GAHAEI++LI TLC +G++LLV SSEL+ELV ++++V+++RDR V E+ Sbjct: 424 LDEPTRGIDIGAHAEIVKLIRTLCDEGMSLLVASSELDELVAFSNKVVVLRDRYAVRELS 483 Query: 486 LAELSVPAIMNAIA 499 AEL+ +M AIA Sbjct: 484 GAELTSQHVMQAIA 497 Lambda K H 0.321 0.138 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 603 Number of extensions: 26 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 500 Length of database: 499 Length adjustment: 34 Effective length of query: 466 Effective length of database: 465 Effective search space: 216690 Effective search space used: 216690 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory