Align Dihydrolipoyllysine-residue (2-methylpropanoyl)transferase (EC 2.3.1.168) (characterized)
to candidate 7024958 Shewana3_2129 dihydrolipoamide acetyltransferase (RefSeq)
Query= reanno::Marino:GFF1672 (378 letters) >FitnessBrowser__ANA3:7024958 Length = 531 Score = 381 bits (978), Expect = e-110 Identities = 214/391 (54%), Positives = 267/391 (68%), Gaps = 23/391 (5%) Query: 1 MTDKAMVEITAPKAGRVTKLYHQQQAMAKVHAPLFAFIPRDREEPEEARTKPEPAAQLST 60 MTDKA+V+I A KAG++ KL++++ +AKVHAPLFA E E + P AQ ++ Sbjct: 149 MTDKALVQIPAIKAGKIVKLHYRKGQLAKVHAPLFAI------EVEGGVSAPVSHAQEAS 202 Query: 61 ATA----SPVAAASRQRIPA-------SPAVRRLVREHELNLSDIQGSGKDGRVLKADVL 109 ATA +PVA A+ PA SPAVRR+ R +++LS + GSGK GRV K D+ Sbjct: 203 ATAVNTAAPVACAAVSSEPARQGKALASPAVRRMARALDIDLSRVPGSGKHGRVYKEDIT 262 Query: 110 AYIEEG---PKQAQNQAPADDAQTATTRSARRAPAADQEARVEPIRGIKAAMAKSMVKSA 166 + +G P A A AQ+ + + A D VEPIRG+KA MAK MV+S Sbjct: 263 RFQAQGGAVPAAAPVAAAPTVAQSTVSTAVASAARGDI---VEPIRGVKAVMAKMMVESV 319 Query: 167 TTIPHFIYSEDIDVTDLLKLREQLKPEAEARGSRLTLMPFFMKAMALAVQEFPVLNSQLN 226 +TIPHF Y E+ D+TDL+ LRE +K + + +LT+MPFFMKAM+LA+ +FPVLNSQ+N Sbjct: 320 STIPHFTYCEEFDLTDLVALRESMKAKYSSDEVKLTMMPFFMKAMSLALTQFPVLNSQVN 379 Query: 227 DDVTEIHYLPQCNIGMAVDGKAGLTVPNIKGVESLSLLGIADEVARLTEAARSGRVSQED 286 D TEI Y + NIGMAVD K GL VPN+K V+ S+L +A E+ RLT AARSGRV+ D Sbjct: 380 ADCTEITYKARHNIGMAVDSKVGLLVPNVKDVQDKSILEVAAEITRLTNAARSGRVAPAD 439 Query: 287 LKGGTITISNIGALGGTYTAPIINAPEVAIVALGRTQKLPRFDANGQVVERAIMTVSWAG 346 LK GTI+ISNIGALGGT PIIN PEVAIVALG+ Q LPRF+A G+V R IM VSW+G Sbjct: 440 LKEGTISISNIGALGGTVATPIINKPEVAIVALGKLQTLPRFNAKGEVEARQIMQVSWSG 499 Query: 347 DHRIIDGGTIARFCNRWKGYLESPQTMLLHM 377 DHR+IDGGTIARFCN WK YLE PQ MLL M Sbjct: 500 DHRVIDGGTIARFCNLWKQYLEQPQDMLLAM 530 Score = 56.6 bits (135), Expect = 2e-12 Identities = 33/70 (47%), Positives = 44/70 (62%), Gaps = 4/70 (5%) Query: 1 MTDKAMVEITAPKAGRVTKLYHQQQAMAKVHAPLFAFIPRDREEPEEARTKPEPAAQLST 60 MTDKA+V+I AP AG VTKLY+ + +AKVHAPL+A E A ++PE T Sbjct: 40 MTDKALVQIPAPFAGVVTKLYYTKGDIAKVHAPLYAVQIESDEAAPVAASQPE----AHT 95 Query: 61 ATASPVAAAS 70 AT +P + +S Sbjct: 96 ATQTPASQSS 105 Lambda K H 0.316 0.131 0.367 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 503 Number of extensions: 22 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 2 Length of query: 378 Length of database: 531 Length adjustment: 33 Effective length of query: 345 Effective length of database: 498 Effective search space: 171810 Effective search space used: 171810 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory