Align 5-aminovalerate transaminase (EC 2.6.1.48) (characterized)
to candidate 7025943 Shewana3_3091 4-aminobutyrate aminotransferase (RefSeq)
Query= reanno::pseudo6_N2E2:Pf6N2E2_4013 (425 letters) >FitnessBrowser__ANA3:7025943 Length = 425 Score = 609 bits (1571), Expect = e-179 Identities = 306/422 (72%), Positives = 348/422 (82%), Gaps = 3/422 (0%) Query: 1 MSKTNADLMARRTAAVPRGVGQIHPIFAESAKNATVTDVEGREFIDFAGGIAVLNTGHVH 60 MS TN LMARR AAV GVGQIHP+F A+NATV DVEGREFIDFAGGIAVLNTGH+H Sbjct: 1 MSTTNDSLMARRQAAVAGGVGQIHPVFTARAENATVWDVEGREFIDFAGGIAVLNTGHLH 60 Query: 61 PKIIAAVTEQLNKLTHTCFQVLAYEPYVELCEKINAKVPGDFAKKTLLVTTGSEAVENAV 120 PK+ AAV QL +HTCF VL YE Y+++CEK+N VPGDFAKKT L T+GSEAVENAV Sbjct: 61 PKVKAAVAAQLEDFSHTCFMVLGYESYIQVCEKLNQLVPGDFAKKTALFTSGSEAVENAV 120 Query: 121 KIARAATGRAGVIAFTGAYHGRTMMTLGLTGKVVPYSAGMGLMPGGIFRALYPNELHGVS 180 K+ARA T RAGVIAFT YHGRTM L LTGKV PYS GMGLM +FRA +P LHGVS Sbjct: 121 KVARAYTKRAGVIAFTSGYHGRTMAALALTGKVAPYSKGMGLMSANVFRAEFPCALHGVS 180 Query: 181 IDDSIASIERIFKNDAEPRDIAAIIIEPVQGEGGFYVAPKEFMKRLRALCDQHGILLIAD 240 DD++ASIERIFKNDAEP +IAAII+EPVQGEGGFY A EFM+RLRALCD+ GI+LIAD Sbjct: 181 DDDAMASIERIFKNDAEPSNIAAIILEPVQGEGGFYAASPEFMQRLRALCDREGIMLIAD 240 Query: 241 EVQTGAGRTGTFFAMEQMGVAADLTTFAKSIAGGFPLAGVCGKAEYMDAIAPGGLGGTYA 300 EVQTGAGRTGTFFAMEQMGV+AD+TTFAKSIAGGFPL+G+ GKAE MDAI PGGLGGTY Sbjct: 241 EVQTGAGRTGTFFAMEQMGVSADITTFAKSIAGGFPLSGITGKAEVMDAIGPGGLGGTYG 300 Query: 301 GSPIACAAALAVMEVFEEEHLLDRCKAVGERLVAGLKAIQKKYPVIGDVRALGAMIAVEL 360 G+P+ACAAALAV+EVFEEE LL+R A+GER+ + L +Q ++P I DVR LGAMIA+EL Sbjct: 301 GNPLACAAALAVLEVFEEEKLLERANAIGERIKSALNTMQVEHPQIADVRGLGAMIAIEL 360 Query: 361 FENGDSHKPNAAAVAQVVAKARDKGLILLSCGTYGNVLRVLVPLTAPDEQLDKGLAILEE 420 E G KP AQ++A+AR++GLILLSCGTYGNVLR+LVPLT PDEQL GL IL+ Sbjct: 361 MEEG---KPAPQYCAQILAEARNRGLILLSCGTYGNVLRILVPLTVPDEQLAAGLGILKS 417 Query: 421 CF 422 CF Sbjct: 418 CF 419 Lambda K H 0.320 0.137 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 666 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 425 Length of database: 425 Length adjustment: 32 Effective length of query: 393 Effective length of database: 393 Effective search space: 154449 Effective search space used: 154449 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory