GapMind for catabolism of small carbon sources

 

Aligments for a candidate for atoB in Shewanella sp. ANA-3

Align Acetyl-CoA acetyltransferase; EC 2.3.1.9; Acetoacetyl-CoA thiolase (uncharacterized)
to candidate 7024268 Shewana3_1460 3-ketoacyl-CoA thiolase (RefSeq)

Query= curated2:P44873
         (393 letters)



>lcl|FitnessBrowser__ANA3:7024268 Shewana3_1460 3-ketoacyl-CoA
           thiolase (RefSeq)
          Length = 436

 Score =  224 bits (572), Expect = 3e-63
 Identities = 146/424 (34%), Positives = 229/424 (54%), Gaps = 36/424 (8%)

Query: 2   ENVVIVSAVRTPIGSFNGALSSVSAVDLGAIVIQEAIKRANIESALVNEVIMGNVLQAGL 61
           E + IV+ +RTP      A   VSA+D+G +V+ E + R+ ++  L+ +++ G V+Q   
Sbjct: 13  ERIAIVAGLRTPFAKQATAFHGVSALDMGKMVVNELLARSELDPKLIEQLVYGQVVQMPA 72

Query: 62  GQNPARQAALKAGIEKEIPSLTINKVCGSGLKSVALGAQSIISGDADIVVVGGMENMSQA 121
             N AR+  L  G++    + ++ + C +  +S    A+SI++G+ +I + GG ++ S  
Sbjct: 73  APNIAREIVLGTGMDVSTDAYSVTRACATSFQSAVNVAESIMTGNIEIGIAGGADSSSVL 132

Query: 122 PYLLDSKVRQ-----------GVKM---GNLTLRDTM-IEDGLTCASNHYHMGITAENIA 166
           P  +  K+             G K+     L ++D + +   +   S    MG TAE +A
Sbjct: 133 PIGVSKKLAHALVDLNKARSFGQKLQIFRRLGIKDLLPVPPAVAEYSTGLSMGQTAEQMA 192

Query: 167 EQYGISRQAQDELALRSQTLASQAVQLGVFDKEIVPVMVKTRKGDIIVSRDEYPKADTTA 226
           + Y ISR  QD LA RS TLAS+    G    E++   V   K    + RD   + ++  
Sbjct: 193 KTYNISRADQDALAHRSHTLASETWASGHLRDEVMVAHVPPYKQ--FIERDNNIRENSDL 250

Query: 227 EGLAKLKPAF-KKEGTVTAGNASGINDGAAALILVSESKAHALGLKAIAKIRSYASGGVD 285
              AKL+PAF KK G+VTA N++ + DGA+A+IL+SE +A ALG + I  I+SYA   +D
Sbjct: 251 SSYAKLRPAFDKKHGSVTAANSTPLTDGASAIILMSEGRAKALGYQPIGYIKSYAFTAID 310

Query: 286 P-SVMGLGPVPATQKALKKAGINLDDIDLIEANEAFASQFLG--------------VGKD 330
               M +GP  AT  ALK+AG+ L+D+ LIE +EAFA+Q L               +G++
Sbjct: 311 VWQDMLMGPSYATPLALKRAGMELEDLTLIEMHEAFAAQTLANMQMFASKKFAEEKLGRN 370

Query: 331 L---NLDMNKTNIHGGAIALGHPIGASGARILVTLLHNLIEKDKKLGLATLCIGGGQGIS 387
                +DM+K N+ GG++A GHP  A+G R++  +   L  +    GLAT C  GG G +
Sbjct: 371 RAIGEIDMSKFNVLGGSLAYGHPFAATGTRLITQVCRELKRRGGGTGLATACAAGGLGAA 430

Query: 388 MIVE 391
           MIVE
Sbjct: 431 MIVE 434


Lambda     K      H
   0.315    0.133    0.360 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 414
Number of extensions: 15
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 393
Length of database: 436
Length adjustment: 31
Effective length of query: 362
Effective length of database: 405
Effective search space:   146610
Effective search space used:   146610
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer. Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory