Align lactaldehyde dehydrogenase (EC 1.2.1.22); D-glyceraldehyde dehydrogenase (NADP+) (EC 1.2.1.89) (characterized)
to candidate 7025944 Shewana3_3092 succinate semialdehyde dehydrogenase (RefSeq)
Query= BRENDA::P25553 (479 letters) >FitnessBrowser__ANA3:7025944 Length = 482 Score = 329 bits (844), Expect = 1e-94 Identities = 176/467 (37%), Positives = 272/467 (58%), Gaps = 3/467 (0%) Query: 10 YIDGQFVTWRGDAWIDVVNPATEAVISRIPD-GQAEDARKAIDAAERAQPEWEALPAIER 68 YI+GQ+ + + + NPAT AVI+ +P GQAE + AI AAE A P W AL A ER Sbjct: 14 YINGQWCDAQSKETVAIANPATGAVIASVPVMGQAE-TQAAIAAAEAALPAWRALTAKER 72 Query: 69 ASWLRKISAGIRERASEISALIVEEGGKIQQLAEVEVAFTADYIDYMAEWARRYEGEIIQ 128 LR+ + E + +++ ++ E GK A+ EV + A +I++ AE A+R G+ I Sbjct: 73 GVKLRRWFELLNENSDDLALMMTSEQGKPLAEAKGEVTYAASFIEWFAEEAKRVYGDTIP 132 Query: 129 SDRPGENILLFKRALGVTTGILPWNFPFFLIARKMAPALLTGNTIVIKPSEFTPNNAIAF 188 + + I++ K+ +GVT I PWNFP +I RK APAL G T+V+KP+ TP A+A Sbjct: 133 GHQGDKRIMVIKQPVGVTAAITPWNFPAAMITRKAAPALAAGCTMVVKPAPQTPFTALAL 192 Query: 189 AKIVDEIGLPRGVFNLVLGRGETVGQELAGNPKVAMVSMTGSVSAGEKIMATAAKNITKV 248 A + + G+P GVF+++ G +G E+ NP V +S TGS G K+M A + K+ Sbjct: 193 AVLAERAGIPAGVFSVITGDAIGIGNEMCSNPVVRKLSFTGSTQVGIKLMEQCAPTLKKL 252 Query: 249 CLELGGKAPAIVMDDADLELAVKAIVDSRVINSGQVCNCAERVYVQKGIYDQFVNRLGEA 308 LELGG AP IV DDA+++ AV+ + ++ N+GQ C CA R+YVQ G+YD+F +L A Sbjct: 253 SLELGGNAPFIVFDDANIDAAVEGAMIAKYRNAGQTCVCANRIYVQAGVYDEFARKLSIA 312 Query: 309 MQAVQFGNPAERNDIAMGPLINAAALERVEQKVARAVEEGARVAFGGKAVEGKGYYYPPT 368 + ++ G + GPLIN AA+E+V+ + A+ +GA V GGK G ++ PT Sbjct: 313 VGKLKVGEGIGEG-VTTGPLINCAAVEKVQSHLEDALSKGATVVAGGKPHSLGGNFFEPT 371 Query: 369 LLLDVRQEMSIMHEETFGPVLPVVAFDTLEDAISMANDSDYGLTSSIYTQNLNVAMKAIK 428 +L +V M + EETFGP+ P+ F ++D I AND+++GL + Y +++++ K + Sbjct: 372 VLTNVDSSMRVAREETFGPLAPLFKFTDVDDVIKQANDTEFGLAAYFYGRDISLVWKVTE 431 Query: 429 GLKFGETYINRENFEAMQGFHAGWRKSGIGGADGKHGLHEYLQTQVV 475 L++G +N G + SG+G K G+ EYL+ + + Sbjct: 432 ALEYGMVGVNTGLISTEVAPFGGMKSSGLGREGSKFGIEEYLEIKYI 478 Lambda K H 0.318 0.135 0.392 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 556 Number of extensions: 28 Number of successful extensions: 2 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 479 Length of database: 482 Length adjustment: 34 Effective length of query: 445 Effective length of database: 448 Effective search space: 199360 Effective search space used: 199360 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory