Align Threonine dehydratase 2 biosynthetic, chloroplastic; SlTD2; Threonine deaminase 2; EC 4.3.1.17; EC 4.3.1.19 (characterized)
to candidate 7023121 Shewana3_0359 threonine dehydratase (RefSeq)
Query= SwissProt::P25306 (595 letters) >lcl|FitnessBrowser__ANA3:7023121 Shewana3_0359 threonine dehydratase (RefSeq) Length = 547 Score = 383 bits (983), Expect = e-110 Identities = 215/505 (42%), Positives = 306/505 (60%), Gaps = 9/505 (1%) Query: 97 YLVDILASPVYDVAIESPLELAEKLSDRLGVNFYIKREDKQRVFSFKLRGAYNMMSNLSR 156 YL IL S VYDVA +PL KLS RLG ++KRED Q V SFKLRGAYN ++ LS+ Sbjct: 35 YLQKILLSSVYDVAKVTPLSSLNKLSARLGCQVFLKREDMQPVHSFKLRGAYNRIAQLSQ 94 Query: 157 EELDKGVITASAGNHAQGVALAGQRLNCVAKIVMPTTTPQIKIDAVRALGGDVVLYGKTF 216 E +GV+ ASAGNHAQGVA++ A IVMP TTP IK+DAVR LGG+VVL+G+ F Sbjct: 95 AECQRGVVCASAGNHAQGVAMSAASRGVDAVIVMPETTPDIKVDAVRRLGGNVVLHGQAF 154 Query: 217 DEAQTHALELSEKDGLKYIPPFDDPGVIKGQGTIGTEINRQLKDIHAVFIPVGGGGLIAG 276 D+A A+E+++ +G YI PFDD VI GQGTI E+ +Q +D+ VF+PVGGGGLIAG Sbjct: 155 DQANGFAMEMAKLEGRVYIAPFDDEAVIAGQGTIAQEMLQQQRDLEVVFVPVGGGGLIAG 214 Query: 277 VATFFKQIAPNTKIIGVEPYGAASMTLSLHEGHRVKLSNVDTFADGVAVALVGEYTFAKC 336 +A ++K + P KI+GVEP AA + ++ G V L+ V FADGVAV +G F Sbjct: 215 IAAYYKAVMPQVKIVGVEPEDAACLKAAMEAGEPVTLAQVGLFADGVAVKRIGTEPFRLA 274 Query: 337 QELIDGMVLVANDGISAAIKDVYDEGRNILETSGAVAIAGAAAYCEFYKI----KNENIV 392 + +D +V V +D I AA+KD++++ R I E +GA+++AG Y K E + Sbjct: 275 KWFVDEVVTVTSDEICAAVKDIFEDTRAIAEPAGALSLAGLKKYVSTNAAGESGKGEKVA 334 Query: 393 AIASGANMDFSKLHKVTELAGLGSGKEALLATFMVEQQGSFKTFVGLVGSLNFTELTYRF 452 AI SGAN++F L V+E LG KEA+LA + E+ GSF F L+ TE YRF Sbjct: 335 AILSGANVNFHSLRYVSERCELGEQKEAVLAVKVPERPGSFLRFCELLEKRVMTEFNYRF 394 Query: 453 TSERKNALILYRVNVDK-ESDLEKMIEDMKSSNMTTLNLSHNELVVDHLKHLVGG--SAN 509 +S R A++ + + K +LE++I ++ + +LS +E H++++VGG Sbjct: 395 SS-RDMAVVFAGIRLTKGHGELEQIINTLEDNGFEVQDLSGDETAKLHVRYMVGGHPPEP 453 Query: 510 ISDEIFGEFIVPEKAETLKTFLDAFSPRWNITLCRYRNQGDINASLLMGFQVPQAEMDEF 569 + + +F F PE L FL +WNI+L YRN G +L GF+VP+ + F Sbjct: 454 LEERLF-SFEFPEHPGALLKFLTTLQSKWNISLFHYRNHGAAFGRVLAGFEVPEGDALPF 512 Query: 570 KNQADKLGYPYELDNYNEAFNLVVS 594 + +LG+ Y+ + + A+ L ++ Sbjct: 513 QQFLTELGFVYQEETQSPAYQLFLN 537 Lambda K H 0.317 0.135 0.382 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 673 Number of extensions: 21 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 595 Length of database: 547 Length adjustment: 36 Effective length of query: 559 Effective length of database: 511 Effective search space: 285649 Effective search space used: 285649 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory