Align L-lactate dehydrogenase iron-sulfur cluster-binding protein LldF (characterized, see rationale)
to candidate 7025757 Shewana3_2907 4Fe-4S ferredoxin iron-sulfur binding domain-containing protein (RefSeq)
Query= uniprot:Q8EGS5 (464 letters) >FitnessBrowser__ANA3:7025757 Length = 464 Score = 934 bits (2414), Expect = 0.0 Identities = 453/464 (97%), Positives = 460/464 (99%) Query: 1 MAYQHNHEAMGSQVHAYKADIFCRDETRVDWHSKALWLLREKRDRAAGSLPEWEQLRQLG 60 MAYQHNHEA GSQVHA+KADIFCRDETRVDWHSKALW+LREKRDRAAGSLPEWEQLRQLG Sbjct: 1 MAYQHNHEATGSQVHAHKADIFCRDETRVDWHSKALWVLREKRDRAAGSLPEWEQLRQLG 60 Query: 61 SEIKLHTLTNLAQYLETFEQNCLANGIKVHWAKDGAEHNRIVHEILASHKVKKLVKSKSM 120 SEIKLHTLTNLAQYLETFEQNCLANGIKVHWAKDGAEHNRIVH+ILASHKVKKLVKSKSM Sbjct: 61 SEIKLHTLTNLAQYLETFEQNCLANGIKVHWAKDGAEHNRIVHDILASHKVKKLVKSKSM 120 Query: 121 LTEECHLNPYLEQRGIEVIDTDLGERIIQLAKMPPSHIVVPAIHMKKEEVGDLFHDKLGT 180 LTEECHLNPYLEQRGIEVIDTDLGERIIQLAKMPPSHIVVPAIHMKKEEVGDLFHDKLGT Sbjct: 121 LTEECHLNPYLEQRGIEVIDTDLGERIIQLAKMPPSHIVVPAIHMKKEEVGDLFHDKLGT 180 Query: 181 KAGESDPLYLTRAARAHLREQFLSADAAMTGVNMAIADKGAVVVCTNEGNADMGANLPKL 240 KAGESDPLYLTRAARAHLREQFLSADAAMTGVNMAIADKGAVVVCTNEGNADMGANLPKL Sbjct: 181 KAGESDPLYLTRAARAHLREQFLSADAAMTGVNMAIADKGAVVVCTNEGNADMGANLPKL 240 Query: 241 QLHSMGIDKVVPDIDSAAVLLRTLARNATGQPVTTYSAFYRGPQVDGEMHVIIVDNGRTE 300 QLHSMGIDK+VPDIDSAAVLLRTLARNATGQPVTTYSAFYRGPQVDGEMHVIIVDNGRTE Sbjct: 241 QLHSMGIDKIVPDIDSAAVLLRTLARNATGQPVTTYSAFYRGPQVDGEMHVIIVDNGRTE 300 Query: 301 MMKDKILAESLKCIRCGGCLNTCPVYRRSGGYSYNYTIPGPIGIAVGATHDNTNSIAWAC 360 M+KDKILAESLKCIRCGGCLNTCPVYRRSGGYSYNYTIPGPIGIAVGA HD+TNSIAWAC Sbjct: 301 MLKDKILAESLKCIRCGGCLNTCPVYRRSGGYSYNYTIPGPIGIAVGAKHDDTNSIAWAC 360 Query: 361 TLCGSCTYVCPTKVPLDKIIHHHRRLKAEAGKLPYGKNAYMPLVGKFMASTTLLNCSMGA 420 TLCGSCTYVCPTKVPLDKII HHRRLKAEAG+LPYGKN YMPLVGKFMASTTLLNCSMGA Sbjct: 361 TLCGSCTYVCPTKVPLDKIIFHHRRLKAEAGQLPYGKNGYMPLVGKFMASTTLLNCSMGA 420 Query: 421 ARTALRILPGSLLKPFSGAWGKYRELPVAPNSSFEAWFKKHRSL 464 ARTALRILPGSLLKPFSGAWGKYRELPVAPNSSFEAWFKKHRSL Sbjct: 421 ARTALRILPGSLLKPFSGAWGKYRELPVAPNSSFEAWFKKHRSL 464 Lambda K H 0.320 0.134 0.413 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 869 Number of extensions: 11 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 464 Length of database: 464 Length adjustment: 33 Effective length of query: 431 Effective length of database: 431 Effective search space: 185761 Effective search space used: 185761 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory