Align trehalose-specific PTS system, I, HPr, and IIA components (characterized)
to candidate 7025893 Shewana3_3042 phosphoenolpyruvate-protein phosphotransferase PtsP (RefSeq)
Query= reanno::pseudo3_N2E3:AO353_15995 (844 letters) >FitnessBrowser__ANA3:7025893 Length = 744 Score = 291 bits (746), Expect = 7e-83 Identities = 199/564 (35%), Positives = 299/564 (53%), Gaps = 17/564 (3%) Query: 276 LLRGVCASAGSAFGYVVQVA-ERTLEMPEFAA-DQQLERESLERALMHATQALQRLR--- 330 L +G AS+G A + + + E +LE P+ D LE L A+ +A+ L Sbjct: 169 LFQGTSASSGIAIAHALVLGGEISLEQPDVRCEDIVLESSRLVAAMGRCKEAIGALSQRF 228 Query: 331 DNAAGEAQADIFKAHQELLEDPSLLEQAQALIAEGKSAAFAWNSATEATATLFKSLGSTL 390 D E A IF A Q LL+D SL + + +G A A + + F ++ Sbjct: 229 DREQDEEVASIFNALQLLLDDVSLGGEYAREVQQGWEAESAVSRVSLRYIQQFLAMEDPY 288 Query: 391 LAERALDLMDVGQRVLKLILGVPDGVWELPDQ-AILIAEQLTPSQTAALDTGKVLGFATV 449 L ERA D+ D+GQ+VL+ ++ P+ + PD+ IL+ + + A K+ G T Sbjct: 289 LKERASDIRDLGQKVLRQLIE-PERLELEPDKPVILVTREADATMLAEFPRQKLAGIVTE 347 Query: 450 GGGATSHVAILARALGLPAVCGLPLQVLSLASGTRVLL-DADKGELHLDPAVSVIEQLHA 508 GG SH AILARALG+PA+ G+ Q+LS ++L+ +A +G+L + P+ +++ + + Sbjct: 348 LGGVNSHAAILARALGVPAITGVE-QLLSADIDQKLLVVNASRGQLMVSPSPAIVSEYRS 406 Query: 509 KRQQQRQRHQHELENAARAAVTRDGHHFEVTANVASLAETEQAMSLGAEGIGLLRSEFLY 568 Q+ + + A +V DG + N L+ ++ GA+GIGL R+E + Sbjct: 407 LISAQKALQRQYAQELALPSVMLDGTRIRLYLNAGLLSGVASEIAEGADGIGLYRTEIPF 466 Query: 569 QQRSVAPSHDEQAGTYSAIARALGPQRNLVVRTLDVGGDKPLAYVPMDSEANPFLGMRGI 628 + PS EQ Y + A R +V+RTLDVGGDKPL Y P+ E NPFLG RGI Sbjct: 467 MLQQRFPSESEQVKVYQQVLSAASG-RPVVMRTLDVGGDKPLPYFPI-KEDNPFLGWRGI 524 Query: 629 RLCLERPQLLREQFRAILSSAGLAR-LHIMLPMVSQLSELRLARLMLEEEALAL-----G 682 RL L+ P+L Q RA+L + G + L I+LPMVS L E+ + LE+ + L Sbjct: 525 RLSLDHPELFLVQLRAMLQAGGECKQLSILLPMVSNLDEIDQSLAYLEQAYVELKNDVNS 584 Query: 683 LRELPKLGIMIEVPAAALMADLFAPEVDFFSIGTNDLTQYTLAMDRDHPRLASQADSFHP 742 E+P++GIM+EVPA D A VDF S+G+NDLTQY LA+DR++PR++S DS+HP Sbjct: 585 QIEMPRIGIMLEVPALLYQLDEVAKRVDFVSVGSNDLTQYLLAVDRNNPRVSSLFDSYHP 644 Query: 743 SVLRLIASTVKAAHAHGKWVGVCGALASETLAVPLLLGLGVDELSVSVPLIPAIKAAIRE 802 +LR + H + +CG LA E + LL+ +G LS++ + I +R Sbjct: 645 GILRALHQARLDCDYHELDISICGELAGEPMGAILLVAMGYQHLSMNQGSLARINYLLRR 704 Query: 803 VELSDCQAIAHQVLGLESAEQVRE 826 V +D + Q L L + QVRE Sbjct: 705 VSRADLTQLLSQALSLSNGFQVRE 728 Lambda K H 0.318 0.132 0.370 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 1160 Number of extensions: 53 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 844 Length of database: 744 Length adjustment: 41 Effective length of query: 803 Effective length of database: 703 Effective search space: 564509 Effective search space used: 564509 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 55 (25.8 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory