Align Ribose import ATP-binding protein RbsA 1; EC 7.5.2.7 (characterized, see rationale)
to candidate 7024900 Shewana3_2074 ABC transporter related (RefSeq)
Query= uniprot:Q9WXX0 (520 letters) >FitnessBrowser__ANA3:7024900 Length = 499 Score = 356 bits (914), Expect = e-102 Identities = 188/499 (37%), Positives = 311/499 (62%), Gaps = 15/499 (3%) Query: 14 ILKAKGIVKRFPGVVAVDNVDFEVYENEIVSLIGENGAGKSTLIKILTGVLKPDAGEILV 73 IL+ K I K +PGV A+++V ++ E+ +L+GENGAGKSTL+K++TG D G+IL Sbjct: 4 ILELKQISKHYPGVKALEDVSLRLFAGEVHALLGENGAGKSTLVKVMTGAQSKDMGDILF 63 Query: 74 NGERVEFHSPVDAFKKGISVIHQELNLCDNMTVAENIFLAYEAVRGQKRTLSSRVDENYM 133 GE F++P+DA K GIS ++QE+NL N+TVA+N+FL YE R + M Sbjct: 64 LGEPQHFNTPMDAQKAGISTVYQEVNLVPNLTVAQNLFLGYEPRR------LGLIHFKKM 117 Query: 134 YTRSKELLDLIGAKFSPDALVRNLTTAQRQMVEICKALVKEPRIIFMDEPTSSLTVEETE 193 Y ++ +L A + + + A +Q++ I + + +++ +DEPT+SL +E + Sbjct: 118 YADARAVLTQFKLDIDVSAPLSDYSIAVQQLIAIARGVAMSAKVLVLDEPTASLDAKEVQ 177 Query: 194 RLFEIIEMLKSRGISVVFVSHRLDEVMRISDRIVVMRDGKRIGELKKGEFDVDTIIKMMV 253 LF I+ LK++G+++VF++H LD+V +ISDRI V+R+G+ IGE E +I+ M+ Sbjct: 178 VLFGILNQLKAKGVAIVFITHFLDQVYQISDRITVLRNGQFIGEYLTAELPQPKLIEAML 237 Query: 254 GREVE------FFPHGIETRPGEIALEVRNLKWKDKVKNVSFEVRKGEVLGFAGLVGAGR 307 GR ++ TR + L + ++ K +++++ V KG+ +G AGL+G+GR Sbjct: 238 GRSLQEQLVDKQEKERTVTRAEAVLLSLEDVSVKGSIQSMNLTVPKGQAVGLAGLLGSGR 297 Query: 308 TETMLLVFGVNQKESGDIYVNGRKVEIKNPEDAIKMGIGLIPEDRKLQGLVLRMTVKDNI 367 +E VFG++ +SG I++ G+K+ + P DAI GI L PEDRK+ G++ +++++NI Sbjct: 298 SEVCNAVFGLDLVDSGSIHLAGQKLNLSQPVDAISAGIALCPEDRKIDGIIGPLSIRENI 357 Query: 368 VLPSLKKISRWGLVLDERKEEEISEDYVKRLSIKTPSIYQITENLSGGNQQKVVLAKWLA 427 +L +I W L +++EI++ ++ +L I TP + E LSGGNQQKV+LA+WLA Sbjct: 358 ILALQARIG-WWRYLSNTRQQEIAQFFIDKLQIATPDADKPIEQLSGGNQQKVILARWLA 416 Query: 428 TNADILIFDEPTRGIDVGAKAEIHRMIRELAAQGKAVIMISSELPEILNLSDRIVVMWEG 487 +L+ DEPTRGID+GA AEI ++IR L +G ++++ SSEL E++ S+++VV+ + Sbjct: 417 IEPILLVLDEPTRGIDIGAHAEIVKLIRTLCDEGMSLLVASSELDELVAFSNKVVVLRDR 476 Query: 488 EITAVLDNREKRVTQEEIM 506 L E +T + +M Sbjct: 477 YAVRELSGAE--LTSQHVM 493 Lambda K H 0.319 0.138 0.381 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 575 Number of extensions: 29 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 499 Length adjustment: 34 Effective length of query: 486 Effective length of database: 465 Effective search space: 225990 Effective search space used: 225990 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory