Align Formate-dependent phosphoribosylglycinamide formyltransferase; 5'-phosphoribosylglycinamide transformylase 2; Formate-dependent GAR transformylase; GAR transformylase 2; GART 2; Non-folate glycinamide ribonucleotide transformylase; Phosphoribosylglycinamide formyltransferase 2; EC 2.1.2.- (characterized)
to candidate BPHYT_RS06125 BPHYT_RS06125 phosphoribosylglycinamide formyltransferase
Query= SwissProt::P33221 (392 letters) >FitnessBrowser__BFirm:BPHYT_RS06125 Length = 404 Score = 450 bits (1158), Expect = e-131 Identities = 245/394 (62%), Positives = 285/394 (72%), Gaps = 9/394 (2%) Query: 4 LGTALRPAATRVMLLGSGELGKEVAIECQRLGVEVIAVDRYADAPAMHVAHRSHVINMLD 63 +GT L +ATRVMLLG+GELGKEV I QRLGVEVIAVDRY +AP VAHR+HVI+M D Sbjct: 7 IGTPLSESATRVMLLGAGELGKEVIIALQRLGVEVIAVDRYPNAPGHQVAHRAHVIDMTD 66 Query: 64 GDALRRVVELEKPHYIVPEIEAIATDMLIQLEEEGL-NVVPCARATKLTMNREGIRRLAA 122 ALR +VE E+PH IVPEIEAIATD L +E +GL V+P ARAT+LTMNREGIRRLAA Sbjct: 67 RAALRALVEQERPHLIVPEIEAIATDALAAIESDGLAEVIPTARATQLTMNREGIRRLAA 126 Query: 123 EELQLPTSTYRFADSESLFREAVADIGYPCIVKPVMSSSGKGQTFIRSAEQLAQAWKYAQ 182 EEL LPTS Y FADS R +A +GYPC+VKPVMSSSGKGQ+ +RS + AW+YA Sbjct: 127 EELGLPTSPYAFADSLDELRAGIAKVGYPCVVKPVMSSSGKGQSVLRSDADVEPAWQYAL 186 Query: 183 QGGRAGAGRVIVEGVVKFDFEITLLTVSAVD------GVHFCAPVGHRQEDGDYRESWQP 236 GGR GRVIVEG + F++EIT LTV A+D +FC P+GH Q GDY ESWQP Sbjct: 187 AGGRVNHGRVIVEGFIDFEYEITQLTVRAIDPASGEVSTYFCDPIGHVQVAGDYVESWQP 246 Query: 237 QQMSPLALERAQEIARKVVLALGGYGLFGVELFVCGDEVIFSEVSPRPHDTGMVTLISQD 296 Q MSPLALER++E+A KV ALGG GLFGVELFV GD+V FSEVSPRPHDTG+VTL SQ Sbjct: 247 QPMSPLALERSREVAHKVTAALGGRGLFGVELFVRGDDVWFSEVSPRPHDTGLVTLCSQR 306 Query: 297 LSEFALHVRAFLGLPVGGIRQYGPAASAVILPQLTSQNVTFDNVQNAVGA-DLQIRLFGK 355 SEF LH RA LGLPV + P ASAVI L + F+ V A+ + +RLFGK Sbjct: 307 FSEFELHARAILGLPVDTSLR-APGASAVIYGGLDEAGIAFEGVAAALAVPNADLRLFGK 365 Query: 356 PEIDGSRRLGVALATAESVVDAIERAKHAAGQVK 389 PE RR+GVALAT E+ +A RAK AA V+ Sbjct: 366 PESFAKRRMGVALATGENTDEARSRAKQAAAAVR 399 Lambda K H 0.320 0.136 0.390 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 454 Number of extensions: 15 Number of successful extensions: 5 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 392 Length of database: 404 Length adjustment: 31 Effective length of query: 361 Effective length of database: 373 Effective search space: 134653 Effective search space used: 134653 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 50 (23.9 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory