Align 2-hydroxymuconate-6-semialdehyde dehydrogenase (EC 1.2.1.85) (characterized)
to candidate BPHYT_RS28885 BPHYT_RS28885 betaine-aldehyde dehydrogenase
Query= metacyc::MONOMER-15108 (486 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS28885 BPHYT_RS28885 betaine-aldehyde dehydrogenase Length = 485 Score = 408 bits (1049), Expect = e-118 Identities = 214/478 (44%), Positives = 301/478 (62%), Gaps = 11/478 (2%) Query: 13 HFIDGKFVPSLDGKTFDNINPATEEKLGTVAEGGAAEIDLAVQAAKKALNGPWKKMTANE 72 H I+GK + D F+ +NPAT+E L VA GGA E+D AV+AAK A W A E Sbjct: 5 HLINGKASAAKD--YFETVNPATQEVLAEVARGGAEEVDAAVRAAKDAFPA-WAAKPAAE 61 Query: 73 RIAVLRKVGDLILERKEELSVLESLDTGKPTWLSGSIDIPRAAYNFHFFSDYIRTITNEA 132 R ++RK+G+LI + ++S E+ DTG+ + +PRAA NF +F++ + Sbjct: 62 RAKLVRKLGELIAKNVPDISETETKDTGQTISQTRKQLVPRAADNFSYFAEMCTRVDGH- 120 Query: 133 TQMDDVALNYAIRRPVGVIGLINPWNLPLLLMTWKLAPALAAGNTVVMKPAELTPMTATV 192 T D LNY + PVGV LI+PWN+P + TWK+AP LA GNT V+K +EL+P+TA++ Sbjct: 121 TYPTDTHLNYTLFHPVGVCALISPWNVPFMTATWKVAPCLAFGNTAVLKMSELSPLTASM 180 Query: 193 LAEICRDAGVPDGVVNLVHGFGPNSAGAALTEHPDVNAISFTGETTTGKIIMASAAKTLK 252 L + +AG+P GV+N+VHGFG ++ G L HPDV+A+SFTG T TG I+ +A LK Sbjct: 181 LGNLALEAGIPAGVLNVVHGFGKDT-GEPLVAHPDVHAVSFTGSTATGNRIVQTAG--LK 237 Query: 253 RLSYELGGKNPNVIFADSNLDEVIETTMKSSFINQGEVCLCGSRIYVERPAYEAFLEKFV 312 + S ELGGK+P VIF D++ + ++ + F N GE C GSRI V+R Y F E+F+ Sbjct: 238 KFSMELGGKSPFVIFDDADFERALDAAVFMIFSNNGERCTAGSRILVQRSIYARFAERFI 297 Query: 313 AKTKELVVGDPFDAKTKVGALISDEHYERVTGYIKLAVEEGGTILTGG----KRPEGLEK 368 + K L VGDP T VG +IS H +V YI+L +EG T+ GG + P+ + K Sbjct: 298 ERAKRLTVGDPLADSTIVGPMISQGHLAKVRSYIELGPKEGATLACGGLDMPELPDAMRK 357 Query: 369 GYFLEPTIITGLTRDCRVVKEEIFGPVVTVIPFDTEEEVLEQINDTHYGLSASVWTNDLR 428 G F++PT+ + R+ +EEIFGPV +IPFD E + ++ ND YGLS+ +WT + Sbjct: 358 GNFVQPTVFVDVDNRMRIAQEEIFGPVACLIPFDDEADAIKLANDISYGLSSYIWTENTG 417 Query: 429 RAHRVAGQIEAGIVWVNTWFLRDLRTPFGGMKQSGIGREGGLHSFEFYSELTNICIKL 486 RA RVA +EAG+ +VN+ +RDLR PFGG K SG+GREGG S+E + E N+C+ L Sbjct: 418 RALRVAAAVEAGMCFVNSQNVRDLRQPFGGTKASGVGREGGTWSYEVFLEPKNVCVSL 475 Lambda K H 0.318 0.136 0.404 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 642 Number of extensions: 23 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 486 Length of database: 485 Length adjustment: 34 Effective length of query: 452 Effective length of database: 451 Effective search space: 203852 Effective search space used: 203852 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory