Align GguA aka ATU2347 aka AGR_C_4264, component of Multiple sugar (arabinose, xylose, galactose, glucose, fucose) putative porter (characterized)
to candidate BPHYT_RS28215 BPHYT_RS28215 D-ribose transporter ATP binding protein
Query= TCDB::O05176 (512 letters) >FitnessBrowser__BFirm:BPHYT_RS28215 Length = 509 Score = 361 bits (927), Expect = e-104 Identities = 207/501 (41%), Positives = 307/501 (61%), Gaps = 14/501 (2%) Query: 6 LEMRNITKTFPGVKALENVNLKVKEGEIHALVGENGAGKSTLMKVLSGVYPAGTYEGEIH 65 LE+R+ +K+F V+AL + +L + GE+HAL+GENGAGKST++K+L+GV+ T GE+ Sbjct: 11 LELRHASKSFGRVRALSDGDLALWPGEVHALLGENGAGKSTVVKILAGVHQPDT--GELV 68 Query: 66 YEGAVRNFRAINDSEDIGIIIIHQELALVPLLSIAENIFLGNEVASN-GVISWQQTFNRT 124 +G R F ++ D G+ +I+QE L LSIAENIF+G + G I + Sbjct: 69 VDGEARRFATPAEARDAGLAVIYQEPTLFFDLSIAENIFMGRQPVDRIGRIQYDAMRREV 128 Query: 125 RELLKKVGLKESPETLITDIGVGKQQLVEIAKALSKSVKLLILDEPTASLNESDSEALLN 184 LL +G+ + L+ + + QQ++EIAKALS + +LI+DEPTA+L+ + E L Sbjct: 129 DGLLASLGVDLRADQLVRGLSIADQQVIEIAKALSLNANVLIMDEPTAALSLPEVERLFT 188 Query: 185 LLMEFRNQGMTSIIITHKLNEVRKVADQITVLRDGMTVKTLDCHQEEISEDVIIRNMVGR 244 ++ + R + + + ITH+L+EV + ++T++RDG K D +++ + I+ MVGR Sbjct: 189 IVRKLRERDVAILFITHRLDEVFALTQRVTIMRDG--AKVFDGLTTDLNTEAIVAKMVGR 246 Query: 245 DLEDRYPPRDVPIGETILEVKNWNAYHQQHRDRQVLHDINVTVRKGEVVGIAGLMGAGRT 304 DLE YP + P GE L V+ V DI+ VR GE+V +AGL+GAGR+ Sbjct: 247 DLETFYPKAERPPGEVRLSVRGLTRVG-------VFKDISFDVRAGEIVALAGLVGAGRS 299 Query: 305 EFAMSVFGKSYGHRITGDVLIDGKPVDVSTVRKAIDAGLAYVTEDRKHLGLVLNDNILHN 364 E A ++FG +G++ I GK + A+ AGLA V EDR+ GL L +I N Sbjct: 300 EVARAIFG--IDPLDSGEIWIAGKRLTAGRPAAAVRAGLALVPEDRRQQGLALELSIARN 357 Query: 365 TTLANLAGVSKASIIDDIKEMKVASDFRTRLRIRSSGIFQETVNLSGGNQQKVVLSKWLF 424 ++ L + K +I E ++A+ + TRLR+++ LSGGNQQKVVL KWL Sbjct: 358 ASMTVLGRLVKHGLISARSETQLANQWGTRLRLKAGDPNAPVGTLSGGNQQKVVLGKWLA 417 Query: 425 SNPDVLILDEPTRGIDVGAKYEIYTIINQLAADGKGVLMISSEMPELLGNCDRIYVMNEG 484 + P VLI+DEPTRGIDVGAK E+Y+ + +L DG VLMISSE+PE+LG DR+ VM+EG Sbjct: 418 TGPKVLIIDEPTRGIDVGAKAEVYSALAELVRDGMAVLMISSELPEVLGMADRVLVMHEG 477 Query: 485 RIVAELPKGEASQESIMRAIM 505 RI A++ + +A +E IM A + Sbjct: 478 RISADIARADADEERIMGAAL 498 Lambda K H 0.316 0.135 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 620 Number of extensions: 37 Number of successful extensions: 10 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 509 Length adjustment: 35 Effective length of query: 477 Effective length of database: 474 Effective search space: 226098 Effective search space used: 226098 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory