Align succinate-semialdehyde dehydrogenase (NADP+) (EC 1.2.1.79) (characterized)
to candidate BPHYT_RS30285 BPHYT_RS30285 succinate-semialdehyde dehydrogenase
Query= BRENDA::P25526 (482 letters) >lcl|FitnessBrowser__BFirm:BPHYT_RS30285 BPHYT_RS30285 succinate-semialdehyde dehydrogenase Length = 490 Score = 541 bits (1393), Expect = e-158 Identities = 271/486 (55%), Positives = 347/486 (71%), Gaps = 6/486 (1%) Query: 1 MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLGSVPKMGADETRAAIDAANRA 60 + L + L R Q LI+G W A +G VTNPA G+ + V GA + RAA DAA RA Sbjct: 3 LALTRNELIRPQNLIDGAWTGAADGARFAVTNPATGETIVEVADSGAADARAATDAAARA 62 Query: 61 LPAWRALTAKERATILRNWFNLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA 120 PAWR +ERA ILR W L++ + DDLA+LM++EQGKPLAEA+GE++Y AS++ WFA Sbjct: 63 FPAWRDTLPRERAEILRRWHALIVANTDDLAKLMSMEQGKPLAEARGEVAYGASYVAWFA 122 Query: 121 EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPAAMITRKAGPALAAGCTMVLK 180 +E RIYGD IP Q KR+ +K+P+GV AAITPWNFP AMI RK PALAAGCT+V K Sbjct: 123 DEATRIYGDLIPQQQRGKRMSAVKEPVGVIAAITPWNFPLAMIARKIAPALAAGCTVVAK 182 Query: 181 PASQTPFSALALAELAIRAGVPAGVFNVVTGS----AGAVGNELTSNPLVRKLSFTGSTE 236 PA TP +ALALA LA AG+P GV N+++ S AV + L ++ VRK++FTGST Sbjct: 183 PAEDTPLTALALAVLAQEAGLPDGVLNMLSASREQGIAAVADWL-ADSRVRKITFTGSTP 241 Query: 237 IGRQLMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALASKFRNAGQTCVCANRLY 296 +G+ L + A +KK+SLELGGNAPFIVFDDADLD AV G +A+KFRN GQTCVC NR+Y Sbjct: 242 VGKHLARESAGTLKKLSLELGGNAPFIVFDDADLDAAVTGLMAAKFRNGGQTCVCPNRVY 301 Query: 297 VQDGVYDRFAEKLQQAVSKLHIGDGLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVC 356 VQ GVY+RFA+ L + V L + D IGP+I+E+A+ K+ H+ DA++ GA+V+ Sbjct: 302 VQAGVYERFADLLAKRVGALKVAPATDPQAQIGPMINERAIQKIARHVEDAVKHGAKVLV 361 Query: 357 GGK-AHERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDEADVIAQANDTEFGLA 415 GGK E G N++ PT+L D + VS EETFGP+APLFRF +EA+ I +NDT FGLA Sbjct: 362 GGKRLTELGPNYYAPTVLTDARDDMLVSCEETFGPVAPLFRFNEEAEAIRLSNDTPFGLA 421 Query: 416 AYFYARDLSRVFRVGEALEYGIVGINTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEI 475 AYFY +D+ R+ RV LE G++GIN G +S+E APFGG+K SG GREGSKYG++DY+ I Sbjct: 422 AYFYTQDVRRINRVAAQLEAGVIGINEGAVSSEAAPFGGVKESGYGREGSKYGLDDYMSI 481 Query: 476 KYMCIG 481 KYMC G Sbjct: 482 KYMCQG 487 Lambda K H 0.318 0.135 0.395 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 675 Number of extensions: 18 Number of successful extensions: 3 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 482 Length of database: 490 Length adjustment: 34 Effective length of query: 448 Effective length of database: 456 Effective search space: 204288 Effective search space used: 204288 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the preprint on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory