GapMind for catabolism of small carbon sources

 

Alignments for a candidate for lhgD in Burkholderia phytofirmans PsJN

Align L-2-hydroxyglutarate dehydrogenase, mitochondrial; EC 1.1.99.2 (characterized)
to candidate BPHYT_RS01855 BPHYT_RS01855 FAD-dependent oxidoreductase

Query= SwissProt::Q9LES4
         (483 letters)



>FitnessBrowser__BFirm:BPHYT_RS01855
          Length = 368

 Score =  368 bits (945), Expect = e-106
 Identities = 193/400 (48%), Positives = 260/400 (65%), Gaps = 40/400 (10%)

Query: 78  ERVDTVVIGAGVVGLAVARELSLRGREVLILDAASSFGTVTSSRNSEVVHAGIYYPPNSL 137
           ++++ VVIGAGV+GLAVAR L+ RGR+V++L+AA + G  TSSRNSEV+HAGIYYP  SL
Sbjct: 2   DQIECVVIGAGVIGLAVARALAARGRDVIVLEAAEAIGVGTSSRNSEVIHAGIYYPRGSL 61

Query: 138 KAKFCVRGRELLYKYCSEYEIPHKKIGKLIVATGSSEIPKLDLLMHLGTQNRVSGLRMLE 197
           KA  CVRGRE+LY YC E  +PH + GKL+VAT  ++IP+L+ +M  G  N V  L  + 
Sbjct: 62  KAALCVRGREMLYDYCVERNVPHSRCGKLLVATSRNQIPQLESIMAKGRDNGVLDLMRIS 121

Query: 198 GFEAMRMEPQLRCVKALLSPESGILDTHSFMLSLVEKSFDFMVYRDNNNLRLQGEAQNNH 257
           G +A  +EP L CV+A+ SP++GI+D+H  ML+                  LQG+A+ + 
Sbjct: 122 GDQAQALEPALECVEAVFSPQTGIVDSHQLMLA------------------LQGDAERDG 163

Query: 258 ATFSYNTVVLNGRVEEKKMHLYVADTRFSESRCEAEAQLELIPNLVVNSAGLGAQALAKR 317
           A  +++  V        +  + V             A   +    V+NSAGL A ALA+R
Sbjct: 164 AVCAFHAPVKAIEASNGRFIINVG----------GGAPTTISAACVINSAGLQANALARR 213

Query: 318 LHGLDHRFVPSSHYARGCYFTLSGIKAPPFNKLVYPIPEEGGLGVHVTVDLNGLVKFGPD 377
           + GLD R VP  + ARG YF++SG    PF++L+YP+P E GLGVH+T+DL G  +FGPD
Sbjct: 214 IRGLDARHVPPLYLARGNYFSISG--RAPFSRLIYPMPNEAGLGVHLTIDLGGQARFGPD 271

Query: 378 VEWIECTDDTSSFLNKFDYRVNPQRSEKFYPEIRKYYPDLKDGSLEPGYSGIRPKLSGPK 437
           VEW++            +Y V+P+R+E FY  IR Y+P L D +L+P Y+GIRPKLSGP 
Sbjct: 272 VEWVDA----------INYDVDPRRAESFYAAIRTYWPALPDDALQPAYAGIRPKLSGPG 321

Query: 438 QSPADFVIQGEETHGVPGLVNLFGIESPGLTSSLAIAEHI 477
           +  ADFVIQG   HGV GLVNLFGIESPGLT+SLAIA+ +
Sbjct: 322 EPAADFVIQGPAAHGVRGLVNLFGIESPGLTASLAIAQRV 361


Lambda     K      H
   0.318    0.136    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 494
Number of extensions: 24
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 483
Length of database: 368
Length adjustment: 32
Effective length of query: 451
Effective length of database: 336
Effective search space:   151536
Effective search space used:   151536
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory