Align deoxynucleoside transporter, ATPase component (characterized)
to candidate BPHYT_RS16060 BPHYT_RS16060 ribonucleotide-diphosphate reductase subunit alpha
Query= reanno::Burk376:H281DRAFT_01113 (515 letters) >FitnessBrowser__BFirm:BPHYT_RS16060 Length = 506 Score = 320 bits (820), Expect = 8e-92 Identities = 188/489 (38%), Positives = 278/489 (56%), Gaps = 11/489 (2%) Query: 16 LEVVGVHKRFTGVHALRGVSLSFQRGQIYHLLGENGCGKSTLIKIISGAQPPDEGQLVIE 75 L++ + K F GV AL+G+ L +RG+I+ LLGENG GKSTL+KI+ G PDEG + IE Sbjct: 5 LKLDNITKSFPGVKALQGIHLEIERGEIHALLGENGAGKSTLMKILCGIYQPDEGTITIE 64 Query: 76 GVPHARLSALEALAAGIETVYQDLSLLPNMSVAENVALTSELATHEGRLARTFDRRVLAA 135 G + +A+AAG+ V+Q+ SL+P ++ EN+ L EL G L R RR AA Sbjct: 65 GEARHFSNYHDAVAAGVGIVFQEFSLIPYLNAVENMFLGRELKNGLGLLERGKMRRAAAA 124 Query: 136 TAARALEAVGLPGNSEFQSTLIEQLPLATRQLVAIARAIASEAKFVIMDEPTTSLTQKEV 195 R + L S I +L +A +Q V I +A++ EA+ +I+DEPT +LT E Sbjct: 125 IFQRLGVTIDL-------SVPIRELSVAQQQFVEIGKALSLEARILILDEPTATLTPAEA 177 Query: 196 DNLIAVLANLRAQGVTVLFVSHKLDECYAIGGEVIVLRDGQKMAQGPIAEFTKAQISELM 255 ++L A++ L+ QGV ++F+SH L+E + + + VLRDGQ + +A+ + E+M Sbjct: 178 EHLFAIMRELKQQGVAMIFISHHLEEIFEVCDRITVLRDGQYVGMTEVAQSNVGHLVEMM 237 Query: 256 TGRHLSNERYRESAHAQD--IVLDVRGFTRAGQFSDVSFKLHGGEILGVTGLLDSGRNEL 313 GR + N + D IVLDV +SF L GEILG GL+ SGR E Sbjct: 238 VGRRIENSFPPKPPLRADAKIVLDVEKLQLLKDSPVLSFTLREGEILGFAGLVGSGRTET 297 Query: 314 ARALAGVAPAQSGDVLLDGQQIALRTPSDAKRHRIGYVPEDRLNEGLFLDKPIRDNVITA 373 A A+ G PA ++ ++G L P+DA R +G +PE R EGL D I+ N+ Sbjct: 298 ALAVIGADPAYVKEIRINGTAAKLSDPADALRAGVGILPESRKTEGLITDFSIKQNISIN 357 Query: 374 MISSLRD-RFGQIDRTRAQALAEQTVKELQIATPGVDKPVQSLSGGNQQRVLIGRWLAID 432 + R RF R+ A+A A+ +K + + P + V +LSGGNQQ+V+I RWL Sbjct: 358 NLGKYRSLRFFIDQRSEARATAD-IMKRVGVKAPTMHTEVATLSGGNQQKVVIARWLNHH 416 Query: 433 PRVLILHGPTVGVDVGSKDIIYRIMQRLSQRGIGIILISDDLPELLQNCDRILMMKKGHV 492 +LI PT G+DVG+K IY +M+ L+ RG II+IS +LPE++ CDR+ + ++G + Sbjct: 417 TNILIFDEPTRGIDVGAKAEIYLLMRELTARGYSIIMISSELPEIVGMCDRVAVFRQGRI 476 Query: 493 SAEYRADEL 501 A D + Sbjct: 477 EAMLEGDAI 485 Lambda K H 0.319 0.135 0.376 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 554 Number of extensions: 24 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 515 Length of database: 506 Length adjustment: 35 Effective length of query: 480 Effective length of database: 471 Effective search space: 226080 Effective search space used: 226080 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory