GapMind for catabolism of small carbon sources

 

Aligments for a candidate for nupA in Burkholderia phytofirmans PsJN

Align Purine/cytidine ABC transporter ATP-binding protein, component of General nucleoside uptake porter, NupABC/BmpA (transports all common nucleosides as well as 5-fluorocytidine, inosine, deoxyuridine and xanthosine) (Martinussen et al., 2010) (Most similar to 3.A.1.2.12). NupA is 506aas with two ABC (C) domains. NupB has 8 predicted TMSs, NupC has 9 or 10 predicted TMSs in a 4 + 1 (or 2) + 4 arrangement (characterized)
to candidate BPHYT_RS11510 BPHYT_RS11510 ABC transporter

Query= TCDB::A2RKA7
         (506 letters)



>lcl|FitnessBrowser__BFirm:BPHYT_RS11510 BPHYT_RS11510 ABC
           transporter
          Length = 533

 Score =  338 bits (866), Expect = 4e-97
 Identities = 198/497 (39%), Positives = 298/497 (59%), Gaps = 8/497 (1%)

Query: 7   IQMIDVTKRFGDFVANDKVNLELKKGEIHALLGENGAGKSTLMNILSGLLEPSEGEVHVK 66
           + +  +TK++    AND V L +  GEIHA+LGENGAGKSTLM I+ G + P  GE+  +
Sbjct: 25  LMLQSITKQYPAVRANDDVTLIVAPGEIHAVLGENGAGKSTLMKIIYGAVRPDAGEIRWE 84

Query: 67  GKLENIDSPSKAANLGIGMVHQHFMLVDAFTVTENIILGNEVTKGINLDLKTAKKKILEL 126
           G+   I +P+ A  LGIGMV QHF L +  TV ENI L  +       DLKT  ++I E+
Sbjct: 85  GQTVEIANPAAARKLGIGMVFQHFSLFETLTVGENIALALDEP----FDLKTLSRRIREV 140

Query: 127 SERYGLSVEPDALIRDISVGQQQRVEILKTLYRGADILIFDEPTAVLTPAEITELMQIMK 186
           S  YGL ++P   +  ++VG++QRVEI++ L +   +LI DEPT+VLTP  + +L + ++
Sbjct: 141 SADYGLDIDPQRHVHSLTVGERQRVEIVRCLLQNPRLLIMDEPTSVLTPQAVRKLFETLR 200

Query: 187 NLIKEGKSIILITHKLDEIRAVADRITVIRRGKSIDTVELGDKTNQELAELMVGRSVSFI 246
            L  EG SI+ I+HKLDEI+ + D  TV+R G+    V+   +T+  LA+LMVG S+   
Sbjct: 201 RLAAEGCSILYISHKLDEIQELCDTATVMRGGRVTGHVKPKGETHASLAQLMVGHSLPDY 260

Query: 247 TEKAAAQPKDVVLEIKDLNIK-ESRGSLKVKGLSLDVRAGEIVGVAGIDGNGQTELVKAI 305
           T +    P  V+L++K L+++ +      +  +S  V AGEI G+AG+ GNGQ EL+ A+
Sbjct: 261 TRR-EHNPGAVLLDVKRLSVESDDPFGTSLHDVSFGVHAGEIFGIAGVSGNGQAELLSAL 319

Query: 306 TGLTK-VDSGSIKLHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAENIALQTYY 364
           +G  + V + ++ +  K               G VPE+R   G V  MT++EN AL T +
Sbjct: 320 SGEKRGVRADAVTICGKAAGRLGAGGRRALGFGFVPEERLGRGAVPAMTLSEN-ALLTAH 378

Query: 365 KPPMSKYGFLDYNKINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAREIDRNPDL 424
           +  M   G++    + + A+  ++ FDVR  G    A SLSGGN QK I+ REI + P +
Sbjct: 379 RQQMVNSGWIKAGAMRAFAKRCIDAFDVRCGGSEALAQSLSGGNLQKYIMGREILQAPKV 438

Query: 425 LIVSQPTRGLDVGAIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVIHDGQIQGI 484
           L+V+QPT G+DVGA  +I ++L+     G A+LVIS EL+E+ ++ DRIAV+  G++  +
Sbjct: 439 LVVAQPTWGVDVGAAAFIRQQLLDLSARGVAILVISEELEELFDICDRIAVLAGGRLSPV 498

Query: 485 VSPETTTKQELGILMVG 501
                T  +E+G  M G
Sbjct: 499 RGTGATNAEEIGRWMAG 515



 Score = 87.4 bits (215), Expect = 1e-21
 Identities = 77/268 (28%), Positives = 128/268 (47%), Gaps = 17/268 (6%)

Query: 242 SVSFITEKAAAQPKD----VVLEIKDLNIKESRGSLKVKG-LSLDVRAGEIVGVAGIDGN 296
           S S  ++ AAAQP D        +   +I +   +++    ++L V  GEI  V G +G 
Sbjct: 2   SDSSYSDGAAAQPADRPEQAAPRLMLQSITKQYPAVRANDDVTLIVAPGEIHAVLGENGA 61

Query: 297 GQTELVKAITGLTKVDSGSIKLHNKDITNQRPRKITEQSVGHVPEDRHRDGLVLEMTVAE 356
           G++ L+K I G  + D+G I+   + +    P    +  +G V +      L   +TV E
Sbjct: 62  GKSTLMKIIYGAVRPDAGEIRWEGQTVEIANPAAARKLGIGMVFQ---HFSLFETLTVGE 118

Query: 357 NIALQTYYKPPMSKYGFLDYNKINSHARELMEEFDVRGAGEWVSASSLSGGNQQKAIIAR 416
           NIAL    +P        D   ++   RE+  ++ +          SL+ G +Q+  I R
Sbjct: 119 NIAL-ALDEP-------FDLKTLSRRIREVSADYGL-DIDPQRHVHSLTVGERQRVEIVR 169

Query: 417 EIDRNPDLLIVSQPTRGLDVGAIEYIHKRLIQARDEGKAVLVISFELDEILNVSDRIAVI 476
            + +NP LLI+ +PT  L   A+  + + L +   EG ++L IS +LDEI  + D   V+
Sbjct: 170 CLLQNPRLLIMDEPTSVLTPQAVRKLFETLRRLAAEGCSILYISHKLDEIQELCDTATVM 229

Query: 477 HDGQIQGIVSPETTTKQELGILMVGGNI 504
             G++ G V P+  T   L  LMVG ++
Sbjct: 230 RGGRVTGHVKPKGETHASLAQLMVGHSL 257


Lambda     K      H
   0.315    0.135    0.365 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 654
Number of extensions: 29
Number of successful extensions: 9
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 2
Length of query: 506
Length of database: 533
Length adjustment: 35
Effective length of query: 471
Effective length of database: 498
Effective search space:   234558
Effective search space used:   234558
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory