GapMind for catabolism of small carbon sources

 

Alignments for a candidate for drdehyd-cytc in Burkholderia phytofirmans PsJN

Align cytochrome c component of deoxyribose dehydrogenase (characterized)
to candidate BPHYT_RS24640 BPHYT_RS24640 alcohol dehydrogenase

Query= reanno::WCS417:GFF2133
         (447 letters)



>FitnessBrowser__BFirm:BPHYT_RS24640
          Length = 426

 Score =  438 bits (1126), Expect = e-127
 Identities = 214/408 (52%), Positives = 268/408 (65%), Gaps = 7/408 (1%)

Query: 36  FEQEQAGATFEPALVSRGEYVARLSDCVACHSLAGKAPFAGGLEMATPLGAIHATNITPD 95
           F Q  A A  + ALV RG Y+A+  DCVACH+     PFAGGL M TP+G I+ TNITPD
Sbjct: 19  FAQTPARAA-DQALVQRGAYLAKAGDCVACHTAPKGKPFAGGLPMTTPMGQIYTTNITPD 77

Query: 96  KSTGIGTYSLADFDRAVRHGVAPGGRRLYPAMPYPSYVKLSDDDIKALYAFFMQGIKPAN 155
             TGIG Y+  DF RA+R GVA  G  LYPAMPYPSY K++DDD+KALYA+FM G+ P  
Sbjct: 78  PQTGIGGYTEEDFARAMREGVAKDGHNLYPAMPYPSYAKVNDDDMKALYAYFMSGVAPVQ 137

Query: 156 QPNIPSDIPWPLNMRWPIALWNGVFAPTATYAAKPDQDALWNRGAYIVQGPGHCGSCHTP 215
           Q N   DI WPLNMRWP+  WN VF     Y  KP +D  WNRGAY++QG GHCGSCHTP
Sbjct: 138 QANREPDIKWPLNMRWPLKFWNMVFLDKGVYQDKPGKDVAWNRGAYLIQGLGHCGSCHTP 197

Query: 216 RGLAFNEKALDEAGAPFLAGALLDGWYAPSLRQDPNTGLGRWSEPQIVQFLKTGRNAHAV 275
           RG+AF EKALDE+G+ FL G LLDGW+A +L  + N GLGRW++  +  FLKTG N HA 
Sbjct: 198 RGIAFQEKALDESGSAFLTGGLLDGWFAANLTGEHNVGLGRWNDQDLQAFLKTGANRHAS 257

Query: 276 VYGSMTEAFNNSTQFMQDDDLAAIARYLKSLPGDPQRDGAPWQY--QAVAAVQDAP---- 329
            +GSMT   NNSTQ + D D+AA++ YLKSLP        P++Y  QA     + P    
Sbjct: 258 AFGSMTSVINNSTQGLNDTDIAAMSTYLKSLPPAGGSGAPPYKYDPQATKVSLNRPANDA 317

Query: 330 GAHTYATRCASCHGLDGKGQPEWMPPLAGATSALAKESASAINITLNGSQRVVASGVPDA 389
           GA  Y   C  CHG+DG+G    + PL+G  + L K+ +S IN+TLNG++ +V  G+P  
Sbjct: 318 GARVYTAYCMHCHGVDGRGFAPMLAPLSGNPNVLEKDPSSLINVTLNGTEDLVIGGIPAP 377

Query: 390 YRMPAFREQLSDTEIAEVLSYVRSTWGNNGGAVDANAVGKLRGHTDPA 437
           Y MP +   L+D +IA+VL++VR+ W N   AV A+ V KLR  T  A
Sbjct: 378 YPMPKYAPVLNDQQIADVLTFVRAGWNNGAPAVTADDVAKLRKSTHAA 425


Lambda     K      H
   0.318    0.133    0.423 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 679
Number of extensions: 32
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 447
Length of database: 426
Length adjustment: 32
Effective length of query: 415
Effective length of database: 394
Effective search space:   163510
Effective search space used:   163510
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory