Align Ribose import ATP-binding protein RbsA; EC 7.5.2.7 (characterized, see rationale)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= uniprot:D8J111 (520 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 505 bits (1300), Expect = e-147 Identities = 271/496 (54%), Positives = 347/496 (69%), Gaps = 2/496 (0%) Query: 22 VIALRNVCKRFPGVLALDNCQFELAAGEVHALMGENGAGKSTLMKILSGVYQRDSGDILL 81 ++ L+ V KRFPGV+ALD +L AGEVHA+ GENGAGKSTLMKI+SG Y+ D G + Sbjct: 23 ILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRADEGVVRY 82 Query: 82 DGKPVEITEPRQAQALGIGIIHQELNLMNHLSAAQNIFIGREPRKAMGLFIDEDELNRQA 141 G PV+ + AQA GI IIHQELNL+ HLS A+NI++ REP++ G F+D LN A Sbjct: 83 RGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKR--GPFVDYRTLNSNA 140 Query: 142 AAIFARMRLDMDPSTPVGELTVARQQMVEIAKALSFDSRVLIMDEPTAALNNAEIAELFR 201 R+ L++ PST VG L++A+QQMVEIAKALS D+RVLIMDEPT++L +E +LFR Sbjct: 141 QRCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESETVQLFR 200 Query: 202 IIRDLQAQGVGIVYISHKMDELRQIADRVSVMRDGKYIATVPMQETSMDTIISMMVGRAL 261 IIR+L+A GV I+YISH++DE+ +I DRV+V+RDG++IAT T+++ I++ MVGR L Sbjct: 201 IIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNEIVARMVGRPL 260 Query: 262 DGEQRIPPDTSRNDVVLEVRGLNRGRAIRDVSFTLRKGEILGFAGLMGAGRTEVARAIFG 321 D T N ++L VR L R +SF LRKGEILGFAGLMGAGRTE ARAIFG Sbjct: 261 DDAYPPRQSTPSNQILLRVRDLQRTGVFGPLSFELRKGEILGFAGLMGAGRTETARAIFG 320 Query: 322 ADPLEAGEIIIHGGKAVIKSPADAVAHGIGYLSEDRKHFGLAVGMDVQANIALSSMGRFT 381 A+ ++G I + I SP +A+ HGI YLSEDRK GLA+ M V ANI L+++ + Sbjct: 321 AERPDSGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSMPVSANITLANVRAIS 380 Query: 382 RVGFMDQRAIREAAQMYVRQLAIKTPSVEQQARLLSGGNQQKIVIAKWLLRDCDILFFDE 441 GF+ A+ YVR+L I+TP+V+Q AR LSGGNQQKIVI+KWL R ILFFDE Sbjct: 381 SRGFLRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVISKWLYRGSRILFFDE 440 Query: 442 PTRGIDVGAKSEIYKLLDALAEQGKAIVMISSELPEVLRMSHRVLVMCEGRITGELARAD 501 PTRGIDVGAK IY L+D LA G +V+ISSELPE+L M+ R+ V EGRIT L Sbjct: 441 PTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIAVFHEGRITAVLETRQ 500 Query: 502 ATQEKIMQLATQRESA 517 +QE+I+ A+ R A Sbjct: 501 TSQEEILHHASGRSHA 516 Lambda K H 0.320 0.135 0.372 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 672 Number of extensions: 20 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 520 Length of database: 516 Length adjustment: 35 Effective length of query: 485 Effective length of database: 481 Effective search space: 233285 Effective search space used: 233285 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory