Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate BPHYT_RS04815 BPHYT_RS04815 dihydroxy-acid dehydratase
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__BFirm:BPHYT_RS04815 Length = 557 Score = 307 bits (787), Expect = 6e-88 Identities = 201/539 (37%), Positives = 300/539 (55%), Gaps = 21/539 (3%) Query: 35 GYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPVFSASENTF 94 GY FD +P+IGI N S +TPCN L+ LA+ A + A P + S+ Sbjct: 27 GYEKADFD-KPMIGIANGHSTITPCNAGLQRLADAAVAAIKGADANPQIFGTPTISDGMS 85 Query: 95 RPT-----AMMYRNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASCDLPSIVVT 149 T +++ R + + +E ++GQ MDG V++ GCDK P ++G ++PSI V Sbjct: 86 MGTEGMKYSLVSREVISDCIETCVQGQWMDGVVVIGGCDKNMPGGMIGMLRTNVPSIYVY 145 Query: 150 GGPMLNGYFRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSSGTCNTMGTASTM 209 GG + G ++G + + E AG M+Q +F E + S+G+C M TA+TM Sbjct: 146 GGTIRPGNWKGTDLTIVSSFEAVGEFT-AGRMSQEDFDGIEQNACPSTGSCGGMYTANTM 204 Query: 210 ASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMTKQAFENAIRT 269 +S EALGM+L ++ + D + A + R +V+ VK DLKP +I+TK++ ENA+ Sbjct: 205 SSSFEALGMSLLYSSTMANPDQEKVDSAAESARVLVESVKKDLKPRDIVTKKSIENAVAV 264 Query: 270 NAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLMEEFFYAGGL 329 A GGSTNAV+H LAIA ++ S+DD++R + VP I NL PSG+++ + AGG+ Sbjct: 265 IMATGGSTNAVLHFLAIAHAAEVEWSIDDFERMRKKVPVICNLKPSGQFVATDLHKAGGI 324 Query: 330 PVVLKRLGEAGLLHKDALTVSGETVWDEVKDV---VNWNEDVILPAEKALTSSGGIVVLR 386 P V+K L +AGLLH D +T++G T+ +E+KDV ++ VI P ++AL G + +L+ Sbjct: 325 PQVMKILLDAGLLHGDCITITGRTIAEELKDVPGKPRADQQVIFPIDQALYKEGHLAILK 384 Query: 387 GNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENCIMVMKNCGPK 446 GNLA GAV K + ++ G A VF+D I D + + ++V++ GPK Sbjct: 385 GNLAVDGAVAKITGLKNPVIT--GPARVFDDEQSALEAILADKIVAGD--VVVLRYLGPK 440 Query: 447 GYPGMAEVGNMGLPPKVLKKGILDMV-RISDARMSGTAYGTVVLHTSPEAAVGGPLAVVK 505 G PGM E+ + ++ KG+ + V I+D R SG +G VV H +PEA VGG +A V+ Sbjct: 441 GGPGMPEM--LAPTSAIIGKGLGESVGLITDGRFSGGTWGMVVGHVAPEAFVGGTIAFVQ 498 Query: 506 NGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTSG----YAFLHQQHVEGADTG 560 GD I +D L L+I + EL RR A WQ T G Y L Q +GA TG Sbjct: 499 EGDSITIDAHKLLLQLNIDNAELERRRAAWQQPKPRYTRGVMAKYFALAQPANKGAITG 557 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 913 Number of extensions: 58 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 2 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 557 Length adjustment: 36 Effective length of query: 543 Effective length of database: 521 Effective search space: 282903 Effective search space used: 282903 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory