Align GguA aka ATU2347 aka AGR_C_4264, component of Multiple sugar (arabinose, xylose, galactose, glucose, fucose) putative porter (characterized)
to candidate BPHYT_RS27185 BPHYT_RS27185 D-ribose transporter ATP-binding protein
Query= TCDB::O05176 (512 letters) >FitnessBrowser__BFirm:BPHYT_RS27185 Length = 516 Score = 410 bits (1054), Expect = e-119 Identities = 222/502 (44%), Positives = 325/502 (64%), Gaps = 14/502 (2%) Query: 1 MANTILEMRNITKTFPGVKALENVNLKVKEGEIHALVGENGAGKSTLMKVLSGVYPAGTY 60 ++ IL+++ ++K FPGV AL+ ++L + GE+HA+ GENGAGKSTLMK++SG Y A Sbjct: 19 VSREILQLKGVSKRFPGVVALDGIDLDLCAGEVHAVCGENGAGKSTLMKIISGQYRAD-- 76 Query: 61 EGEIHYEGAVRNFRAINDSEDIGIIIIHQELALVPLLSIAENIFLGNEVASNGVISWQQT 120 EG + Y GA F + +D++ GI IIHQEL LVP LS+AENI+L E + ++ Sbjct: 77 EGVVRYRGAPVQFSSTSDAQAAGIAIIHQELNLVPHLSVAENIYLAREPKRGPFVDYRTL 136 Query: 121 FNRTRELLKKVGLKESPETLITDIGVGKQQLVEIAKALSKSVKLLILDEPTASLNESDSE 180 + + L+++GL SP TL+ + + +QQ+VEIAKALS ++LI+DEPT+SL ES++ Sbjct: 137 NSNAQRCLQRIGLNVSPSTLVGALSLAQQQMVEIAKALSLDARVLIMDEPTSSLTESETV 196 Query: 181 ALLNLLMEFRNQGMTSIIITHKLNEVRKVADQITVLRDGMTVKTLDCHQEEISEDVIIRN 240 L ++ E R G+ + I+H+L+E+ ++ D++TVLRDG + T D ++E I+ Sbjct: 197 QLFRIIRELRAGGVAILYISHRLDEMAEIVDRVTVLRDGRHIATSDFASTTVNE--IVAR 254 Query: 241 MVGRDLEDRYPPRD-VPIGETILEVKNWNAYHQQHRDRQVLHDINVTVRKGEVVGIAGLM 299 MVGR L+D YPPR P + +L V++ V ++ +RKGE++G AGLM Sbjct: 255 MVGRPLDDAYPPRQSTPSNQILLRVRDLQR-------TGVFGPLSFELRKGEILGFAGLM 307 Query: 300 GAGRTEFAMSVFGKSYGHRITGDVLIDGKPVDVSTVRKAIDAGLAYVTEDRKHLGLVLND 359 GAGRTE A ++FG +G + + +PV + + R+AI G+AY++EDRK GL L+ Sbjct: 308 GAGRTETARAIFGAERPD--SGSITLGDEPVTIGSPREAIRHGIAYLSEDRKKDGLALSM 365 Query: 360 NILHNTTLANLAGVSKASIIDDIKEMKVASDFRTRLRIRSSGIFQETVNLSGGNQQKVVL 419 + N TLAN+ +S + +E +A + L IR+ + Q NLSGGNQQK+V+ Sbjct: 366 PVSANITLANVRAISSRGFLRFSEETAIAERYVRELGIRTPTVKQIARNLSGGNQQKIVI 425 Query: 420 SKWLFSNPDVLILDEPTRGIDVGAKYEIYTIINQLAADGKGVLMISSEMPELLGNCDRIY 479 SKWL+ +L DEPTRGIDVGAKY IY ++++LAADG GV++ISSE+PELLG DRI Sbjct: 426 SKWLYRGSRILFFDEPTRGIDVGAKYAIYGLMDRLAADGVGVVLISSELPELLGMTDRIA 485 Query: 480 VMNEGRIVAELPKGEASQESIM 501 V +EGRI A L + SQE I+ Sbjct: 486 VFHEGRITAVLETRQTSQEEIL 507 Lambda K H 0.316 0.135 0.374 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 618 Number of extensions: 29 Number of successful extensions: 9 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 512 Length of database: 516 Length adjustment: 35 Effective length of query: 477 Effective length of database: 481 Effective search space: 229437 Effective search space used: 229437 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory