Align Galactose/methyl galactoside import ATP-binding protein MglA aka B2149, component of Galactose/glucose (methyl galactoside) porter (characterized)
to candidate BPHYT_RS16930 BPHYT_RS16930 arabinose ABC transporter ATP-binding protein
Query= TCDB::P0AAG8 (506 letters) >FitnessBrowser__BFirm:BPHYT_RS16930 Length = 512 Score = 389 bits (999), Expect = e-112 Identities = 210/494 (42%), Positives = 309/494 (62%), Gaps = 10/494 (2%) Query: 14 LEMSGINKSFPGVKALDNVNLKVRPHSIHALMGENGAGKSTLLKCLFGIYQKDSGTILFQ 73 L I K FPGV+ALD V+ V +H LMGENGAGKSTLLK L G YQ DSG ++ Sbjct: 5 LRFDNIGKVFPGVRALDGVSFDVNVGQVHGLMGENGAGKSTLLKILGGEYQPDSGRVMID 64 Query: 74 GKEIDFHSAKEALENGISMVHQELNLVLQRSVMDNMWLGRYPTKGMFVDQDKMYRETKAI 133 G E+ F SA ++ GI+++HQEL V +V +N+ LG+ P +V++ + R + Sbjct: 65 GNEVRFTSAASSIAAGIAVIHQELQYVPDLTVAENLLLGQLPNSLGWVNKREAKRFVRER 124 Query: 134 FDELDIDIDPRARVGTLSVSQMQMIEIAKAFSYNAKIVIMDEPTSSLTEKEVNHLFTIIR 193 + + + +DP A++ LS++Q QM+EI KA NA+++ +DEPTSSL+ +E LF ++R Sbjct: 125 LEAMGVALDPNAKLRKLSIAQRQMVEICKALLRNARVIALDEPTSSLSHRETEVLFKLVR 184 Query: 194 KLKERGCGIVYISHKMEEIFQLCDEVTVLRDGQWIATEP-LAGLTMDKIIAMMVGRSLNQ 252 L+ ++YISH+M+EI++LCD T+ RDG+ IA+ P L G+T D I++ MVGR ++ Sbjct: 185 DLRADNRAMIYISHRMDEIYELCDACTIFRDGRKIASHPTLEGVTRDTIVSEMVGREISD 244 Query: 253 RFPDKENKPGEVILEVRNLT--SLRQPSIRDVSFDLHKGEILGIAGLVGAKRTDIVETLF 310 + GEV + + +L QP+ SF++ +GEI+G GLVGA R++++ ++ Sbjct: 245 IYNYSARPLGEVRFAAKGIEGHALAQPA----SFEVRRGEIVGFFGLVGAGRSELMHLVY 300 Query: 311 GIREKSAGTITLHGKQINNHNANEAINHGFALVTEERRSTGIYAYLDIGFNSLISNIRNY 370 G K G + L GK I +A EAI HG L E+R+ GI A + N IS R+Y Sbjct: 301 GADHKKGGELLLDGKPIKVRSAGEAIRHGIVLCPEDRKEEGIVAMATVSENINISCRRHY 360 Query: 371 KNKVGLLDNSRMKSDTQWVIDSMRVKTPGHRTQIGSLSGGNQQKVIIGRWLLTQPE--IL 428 LD + I +++KTP R +I LSGGNQQK I+ RW L +P+ ++ Sbjct: 361 LRVGMFLDRKKEAETADRFIKLLKIKTPSRRQKIRFLSGGNQQKAILSRW-LAEPDLKVV 419 Query: 429 MLDEPTRGIDVGAKFEIYQLIAELAKKGKGIIIISSEMPELLGITDRILVMSNGLVSGIV 488 +LDEPTRGIDVGAK EIY +I +LA++G I++ISSE+PE+LG++DRI+VM G +SG + Sbjct: 420 ILDEPTRGIDVGAKHEIYNVIYQLAERGCAIVMISSELPEVLGVSDRIVVMRQGRISGEL 479 Query: 489 DTKTTTQNEILRLA 502 K T+ +L LA Sbjct: 480 TRKDATEQSVLSLA 493 Lambda K H 0.318 0.136 0.384 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 584 Number of extensions: 23 Number of successful extensions: 8 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 506 Length of database: 512 Length adjustment: 34 Effective length of query: 472 Effective length of database: 478 Effective search space: 225616 Effective search space used: 225616 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 52 (24.6 bits)
This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see the paper from 2019 on GapMind for amino acid biosynthesis, the paper from 2022 on GapMind for carbon sources, or view the source code.
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory