GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gltP in Burkholderia phytofirmans PsJN

Align Sodium:dicarboxylate symporter (characterized, see rationale)
to candidate BPHYT_RS33330 BPHYT_RS33330 C4-dicarboxylate ABC transporter

Query= uniprot:A1S570
         (437 letters)



>FitnessBrowser__BFirm:BPHYT_RS33330
          Length = 435

 Score =  210 bits (534), Expect = 8e-59
 Identities = 137/413 (33%), Positives = 224/413 (54%), Gaps = 26/413 (6%)

Query: 11  LTGKILIGMGAGILIGLLLRNFFGGSEWVQDYITEGFFHVIGTIFINSLKMLVVPLVFIS 70
           LT  I+ GM  G+++G +      G+   +     G+F +I  IF+  +KM++ PLVF +
Sbjct: 5   LTFYIVAGMALGVIVGYVCHRSAAGA--AEAKTIAGYFSIITDIFLRLVKMIIAPLVFAT 62

Query: 71  LVCGTCSLSEPSKLGRLGGKTLAFYLFTTAIALVVAISAAVLVQPG---NASLASESMQY 127
           LV G   +   S + R+G +++ +++  +  +L + ++ A  +QPG   + +  S  +  
Sbjct: 63  LVSGLAGMEGTSDVRRIGFRSVGWFVCASLFSLALGLALANALQPGAGLHMTQTSSDVAT 122

Query: 128 SAKEAP-SLADVLINIVPSNPMKALSEGNMLQIIIFAVIFGFAISHIGERGRRVAALF-- 184
               A  +  D + +  PS+ + A++  ++LQI++F+V+FG  +S I ++  RV  L   
Sbjct: 123 GLNTAGLNFKDFVTHAFPSSIIDAMARNDILQILVFSVLFGVVLSAI-KKDPRVTPLIAG 181

Query: 185 -DDLNEVIMRVVTLIMQLAPYGVFALMGKLALTLGMETLESVIK-----YFMLVL--VVL 236
            D L   ++++   +M+LAP GVF  +       G++ L +  K     Y  LV   +VL
Sbjct: 182 IDALVPAMLKLTDYVMRLAPIGVFGALASAITVNGLDVLTTYGKLVGSFYLGLVTLWIVL 241

Query: 237 LFHGFVVYPTLLKLFSGLSPLMFIRKMRDVQLFAFSTASSNATLPVTMEASEHRLGADNK 296
           +F G+         F G S    ++ +R+  + AFSTASS A  P   E  E   G D K
Sbjct: 242 IFVGYA--------FLGKSIWRLLKAVREPAMLAFSTASSEAAYPRLTEKLE-AFGIDKK 292

Query: 297 VASFTLPLGATINMDGTAIMQGVATVFIAQVFGIDLTITDYAMVVMTATLASIGTAGVPG 356
           V  FTLPLG   N+DG+ + Q  A +FIAQ FGID+ +    M+++   L+S G AGV  
Sbjct: 293 VVGFTLPLGYAFNLDGSMMYQAFAAIFIAQAFGIDMPLGAQIMMLLVLMLSSKGMAGVAR 352

Query: 357 VGLVMLAMVLNQVGLPVEGIALILGVDRMLDMVRTAVNVTGDTVATVVIAKSE 409
             +V++A +     LP  G+ LIL +D++LDM RTA NV G+++AT VIAK E
Sbjct: 353 GSVVVVAAIAPMFHLPPSGVVLILAIDQILDMGRTATNVIGNSIATAVIAKWE 405


Lambda     K      H
   0.325    0.139    0.388 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 383
Number of extensions: 15
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 437
Length of database: 435
Length adjustment: 32
Effective length of query: 405
Effective length of database: 403
Effective search space:   163215
Effective search space used:   163215
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.0 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.6 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 17 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory